P rotocole

@ E changes pour un
S ystéme
I nterbancaire de

T élécompensation

July 1989

JULY 1989

PeSIT

VERSION 1

CHAPTER 1

-1

CONTENTS

JULY 1989

PeSIT VERSION 1

CHAPTER 1

CHAPTER 1.........
1 INTRODUCTION

1.1 SCOPE......ccnvene

1.2 PRESENTATION..........

S 0 T 0 111 {11 RN

1.2.2 Modifications introduced by the Version E

.......................................

CHA P T ER 2. oo ieeceittistreserarseraasasarrrras sbs Saas s hanava srananae e s AR A e Ea e s e e e s s 8o REE Ea SR PR LS s s oA L e e A s bR s 6

2 ARCHITECTURE AND FUNCTIONAL DESCRIPTION........ccoiiiiis

2.1 REFERENCE MODELcco i

2.2 VIRTUAL FILE MODEL........cooiiirrr s

2.3 FUNCTIONAL DESCRIPTION OF THE PESIT SERVICE AND PROTOCOL

2.3.1 PeSIT ServViCe fUMCHONS. ..covverreerrrre e e err s reeerrnseresssesaanseassrnsmnsassrasnebrsons

2.3.2 Functional Unit CONCEPL.....cciriveerrieren i s s an e

2.3.3 Profile CoNCEPL. e e e

2.3.1
2.3.1

2.3.1

2.3.1.
2.3.1.
2.3.1.

2.3.1.

2.3.1
2.3.1

2.3.1

A
2

3

.8

.9

VT Tl e ieiiereseeraree s snasesns s srnrnrra et ssstensnn s mnn st nnemnssansenns

v 10

w11

W11

RREAD Tl .uunrrvvrreerermnnnseremmnnrreensssssssnnsinsssnnseeessessssessrsssnesnsesnnesnssnans 11

Checkpointing ...ccovvevivrmnrrnrrs e et

W12

TranSTer FECOVEIY .ocovieereereeriissiian s e ae s bas s e sas s nn s 12

Restart during a transfer........c.cccoevveeniiinns

Transfer SUSPENSION.....cuvuev it er e e

Transfer SeCUrity.........ciiiiiiiiniisninnnen

Data comPression. ..ot e

.12
.12
.13

.13

0T CONITO it ii i eeet st rts e essararrararretssrsbs i atnsem s eransn s ansan 13

.10 Datagram transfer.........ooinnnn

.13

.14

.15

JULY 1989

PaSIT VERSION 1

CHAPTER 1

CHAPTER 3........

3 PeSIT SERVICE DESCRIPTION.......cccccoivininens

3.1 INTRODUCTION TO THE SERVICE ..o

3.1.2 Partner roles....ccnnrcmmieninnnnnrrnean e
3.2 REGIMES OF THE FILE SERVICE..............cc..eee
3.3 SERVICES OF THE PeSIT FILE SERVICE.........cooriv
3.4 FUNCTIONAL UNITS
3.5 DEFINITION OF A PROFILE
3.6 DESCRIPTION OF THE SERVICE PRIMITIVES

3.6.1 Correspondance between service and primitives

3.6 .2 CONVENIIONS it eiitsreennisrreenassassrrrssrassntrssennaras nesasnnrrasrrenstasren

..

...

..

..

3.6.3 Description of the primitives...........ccoiiniininn

a)F . CONNECT Serviceccuvvvnierinnennn.
b) F.RELEASE SemviCec..covvveeeriemrcnini ey

¢) FABORT S€IVICE ...ccomverriiin i

A)F.CREATE SEIVICE...coicri ittt s e e e s sas srne s enns
E)F.SELECT SIVICR....ccoecirericnreritire i sinsbss s s s ssessns s sanesasenn s e en e
fIF.OPEN SIVICE...eco it e s e
QIF.CLOSE SIVICE ...ovve it sirests st s sae s sn s s s e s
NYF DESELECT SQIVICE .c.ueeieerererrerre sttt s nss s sns e s
(JF.READ SEIVICE. ... ireiieerrccrir i s s nsss st an s ssss st saessnsssa s st sasnnnas
DEWRITE SEIVICE ..ottt e ra ettt bt
KYF.DATA SEIVICE ..eciuieruiiiriinirintmsias st st sn s s e ansrassras s sns e s nen s

.16
w17

w7

17

W17
W17

.18

20
22
23

23

.24

JF.DATAEND SEIVICEcoviir et st e s s e s 34

m}F.TRANSFER.END Service......
N}F.CANCEL SEIVICE .. .veeiie e ieemreemr et sabs s s e e s nssene e e
O)F.CHECK SBIVICEooceirtiriitist e e vae s st an et nn e
D)F.RESTART SEIVICEoovermiriiiiniini s sn s e snns rsnn e
QIF MESSAGE SEIVICEoeceviiiieriie i st s s sas s s ir s e s e ssbe s s aeais

JULY 1989

PeSIT VERSION 1

CHAPTER 1

3.7 DESCRIPTION OF THE PARAMETERS...........ooiiiii et
) CRC USAQE ..eevereeirereereasirc e seenacesnac st msessas nassssanannssnn e s e sansrnssrnnsrnnasas
[y BIF:To [T E-] (o T OO P TP PO

.38
3 8
3 8

.39

¢) Caller and server identificationccccceeicniiinn,

d} Access CONtrol .o.uecviicnicicecces
e} Version number........ccceviviveniiiens

f) Option CheCKPOINtiNG. v e
Q) File 14entifier .ot e 40

h) Transfer identifier.......cimmn
i} Requested altnibUtes. ...
i) Recovered transfer ... e s
T 1= o 4T
[} Transfer Prioriy ... it

m) Recovery point.............

n) End of transfer code ...
0) Checkpoint NUMDBEr ... e e e e
P} COMPIESSION c.oieieicei i e n e s sas e s s n e e s
Q) ACCESS YPB .eveernteiee et e s s e s sn e s e n e e e a e e
1} RESIAMING .o e s
s) Maximum size of a data elementccve e e e
1) Protocol monitoring tiMe-0ut ... e e
u} Number of data BYIes ..o
v} Number of articles i e
w) Diagnostic COMPIEMENTS.....coovii e
x) File attributes ...
y} Customer and bank identifiers ..o
Z) File acCess CONMOl ... e e
aa) Server date and tiMecovvvrvecreive e s
ez (oIS €T T (- OO

ac) File a@rticleocoereimremreeieee e

Ad) DalAgIaM ... e e enr e

38
38
38

vt 0

41
A1
41

41
A1
41
A1
42
42
A2
A2
42
42
.43
.43
43
44
"y
44
.44
45
45

JULY 1969 PeSIT VERSION 1

CHAPTER 1

3.8 PROFILE DESCRIPTIONS ... i rir s s e e
3.8.1 SIT Profile..ecoccece it s
3.8.2 Non-SIT Profile.....cccooeiiimr i e
3.8.3 Secure Non-SIT Profile..... i s

3.8.4 ETEBACS Profile .ccoveeeicceeec ittt s st e

3.9 PESIT SECURITY SERVICE......oiiiiiinn e s sesve e e e ennnans
3.9.1 Functions provided.......ccovvriimnimimnnsrnses e s

3.9.2 Description of the primitives......cv v

45
.45
47
48

49

50
50

50

A)F .CREATE SOIVICE...couiiiree sttt st s 51
D)F.SELECT ServiCe ..ot

C)F.OPEN SEIVICE ..ocveerriiiiiiitiiiinti s st s i
A}F .CHECK SEIVICE vt st st s s
E)F.DATA.END SeIVICE ...oovviiiiiiiiirraeirss e n e s s

.52
w2

53
53

IF. TRANSFER.END ServiCe.......cccovmviiiirrmmriminniinris e st 53

QIF.MESSAGE SEIVICEocevve ittt st e

3.9.3 Parameter descriplion.......ccccv e rrvie et e

a)Authentication tyPe.......ooiviininnimnc e

b)Authentication elementscovcviniinniine s s
C)MAC COMPUIALION 1YP...cei it sreereret s s e e

.54
.55

.55

.55
55

GIMAC computation eleMENtSccrvvverreerrenemsree e 55

E)ENCIYPHON TYPE ittt e e e e e
fIEncryption elements ...
g)Digital SIgRAatUFe tYPe...occr e e
NIMAC .o eeeeeeseeassase et eesseessses oot s st es st et
DDigital SIGNALUIE ..ot v e e e e e e s
PO BHICALR v e
k}Acknowledgment of the Digital signature ...
}Second Digital Signature.........cccvieiiin v
M}Second CertifiCAE ..o s

.56
.56

.D B

.56
57
57

D7

57

w7

JULY 1589 PeSIT VERSION 1

CHAPTER 1

3.10 EXAMPLES OF PRIMITIVE SEQUENCES..................

3.10.1 NOTMAl SEQUENCEoreereereerreerres visstissssianie s sssssas s s srnssrsssnsne st s srnnanas shasens

3.10.2 Normal sequence for a write transfer........ccovv i

.98

58
69

3.10.3 Normal sequence for a read transfer........oieiiene e 70

3.10.4 Sequence with interruption of the file transfer..............cccoiiins

3.10.5 Sequence with restarting.........c.cccevveiiniinniinnnncenns

4 DESCRIPTION OF THE PeSIT PROTOCOL.......co o

4.2 SERVICE AND PROTOCOL CORRESPONDANCE............co i

71

-

3

73
74
.74

4.3 USE OF THE "CCMMUNICATION SYSTEM" SERVICE..........cccooiviivniricnniniecne 76

4.3.1 Use of the Session service by PeSIT.F ... e

77

4.3.2 Use of the Network service by PeSIT.F'.. ..., g2

4.3.2.1 Use of a synchronous X.25 link.......c.cccminiiininniiiininnnncne
4.3.2.2 Use of a dial-up X.32 INK....overeiicimrerr e e reene s
4.3.2.3 Use of an asynchronous link (PAD}......ccoocuieiiinniiiiniiennicns

4.3.3 Use of the Netex service by PeSIT.F e

4.3.4 Use of the Session service on a local area network by PeSIT.F"...............

.82
.82
.82

.84

JULY 1989

PeSIT VERSION 1

CHAPTER 1

4.4 PROTOCOL UNIT (FPDU) SPECIFIC PROCEDURES..........ccccriimiiniies

4.4,

4.4

4.4,

4.4.

4.4,

4.4,

4.4.

4.4.

4.4.

4.4,

4.4,

4.4,

4.4,

4.4,

4.4,

4.4.

4.4,

4.4,

4.4,

4.4.

4.4.21 FPDU.DTF.END
£.4.22 FPDUSYN woooooooeoeeeeeeeeseeeemeseeeso e es e sesasesenseessssosssenesssoessoessoeseseesesonssoenees
4.4.23 FPDUACK(SYN) . ooereeeeeereeseessemesesessesessoesessasesessesmssesseessessseoesseeesessseesoes

1

.2

10
11
12
13
14
15
16
17
18
19

20

87
.87

.88

FPDU.RCONNEQCTottt sten st s sss s s sna s ren s s assngs sassas 89

FPDUACKICREATE o.oeeeeeeeeeeeomeseeseeneessesresseresseseesmessessssssasssssssssns s

.90

80

FPDU.SELECT ...ttt snarrrnssosss s n s s sann s an s s ann s sn s 91

FPDUACK(SELECT) ...viiiiiiirsinmnsaminiriesrrnessessssssassnssnas s st an e s e s

FPDU.ACK(DESELECT}...ccvivii it insnnss s crnernaes

FPDULORF <o sve s s seeessseseeneeansenssns e ressoss s essssassasssmssasssanssansens
FPDUACK(ORF ..o eeeeeeereeeseeeeseeoneresereesesesees s sosssassnssssssasesssessnessssssessseees

FPDU.CRF ...

FPDUACK(CRF) ... veer v eeeeeeeeesreesreesresssssssssassssassssssssessanssasssssssnssasesssesss

92

92

.93

.94

.94

NV : X

.96

.96

FPDU.ACKIREAD)....coeveeeeveerreeeesseeessseesssesssreesseseseesmessssssassesassssassresssones 97

FPDUWRITE.... .ot it s s e s e s e b 98

FPDU.ACK{WRITE} ittt e aiene e
FPDU.ACK(TRANS.END}co vt

FPDU.DTF, FPDU.DTFDA, FPDU.DTFMA, FPDU.DTFFA.......cor e
4.4.20.1 FPDU.DTF single article ..o
4.4.20.2 FPDU.DTF multi @ricleccccommmniriiiecirr e meemeeens
4.4 20.3 Segmentation of Articlesccoccveieririieeiresrre e

..98

.98

100

1090
100
101
.102

103

104
105
..106

JULY 1989 PeSIT VERSICON 1 CHAFTER

4.4.25 FPDU.ACK{RESYN}..oom ettt v smn s e s

4.4.27 FPDURELCONF.......coivvnemrinnieennee e

4.4.28 FPDUABORToceviriiveeieniencennen e

4.4.30 FPDU.ACK{IDT)coiiiieree ittt sttt i s o

4.4.31 FPDU.MSG, FPDU.MSGDM, FPDU.MSGMM, FPDUMSGMccooviiens

4.4.31.2 Segmentation of Datagrams........cccevverivemvmrrenssesnsinsinnensininnnn 112

48,32 FPDUACK(MSG) vvovveieeveansecssesssesressressssssssssssssssssssssssessssssssssanssssssnsssons

4.5 CONCATENATION OF FPDUS ...t s e

4.6 PESIT PROTOCOL TIME-QUTS ...

4.7 STRUCTURE AND CODING OF PESIT PROTOCOL UNITS (FPDU)

4.7 .1 Structure of a protocol elemMent ..o

4.7 .2 Coding of the parametersc.ccviimiearicnion e
4.7.2.1 Coding CONVENTIONS ...covviieireiiccrreemecrre e e stae st s i
4.7.2.2 List of the PGl and Pl codesocccmimininininin i e

4.7.3 Parameter descriplions .. e rmecrrsr e e e

4.7.4 Protoco] element SHUCIUNE oivvvieeeeeireerreereeee it seessttiees s ee st seestssaeetananrerens

4.8 PESIT PROTOCOL STATE MACHINE TABLES ..o,

4.8.1 Formal description elements........cciniinii s
0 2 O -) = PSP
LT B T T o - P

4.8.1.8 CoONGIONS . ciii e errrieree i rereersesrrnsrress e sbnverranns

E O B I S - Vo {10 1 TN
S B 07 117 1=) (%] F- T U
A .B.3 COllISION TUIES cvieeriieercriee e eerrererarrasrssenres s rarras s sesssesnnrressnssnssranrrnsnsnes

O O I - 1 =R F= o | =TT U

W11

111

w119
w119
122

124

181

w201

201
201
.202
.. 203
204

..205
..208
.206

JULY 1989 PeSIT VERSION 1 CHAPTER 1

ANNEXE 1 COMPRESSION

ANNEXE 2 STORE AND FORWARD OPERATION

ANNEXE 3 USE OF THE SECURITY MECHANISMS

ANNEXE 4 ERROR DIAGNOSTICS

ANNEXE 5 SUMMARY OF THE PROTOCOL UNITS AND THEIR PARAMETERS

JULY 1989

PesSIT

VERSION 1

CHAPTER 1

CHAPTER 1

INTRODUCTION

JULY 1989

PeSIT VERSION 1 CHAPTER 1 2

1

INTRODUCTION

1.1

Scope

The object of these specifications is to define the PeSIT file transfer
protocol.

PeSIT was originally conceived for use within the French Interbank Electronic
payment clearance system hence its name (Protocol for data Exchange within the
French System for Interbank Tele-clearance).

This protocol is used in particular to connect the Bank Processing Centres ({CTB)
owned by the members of the SIT network to the SIT gateways.

However the use of PeSIT is not limited to these connections and may indeed be
used in the most varied environnements.

With the intention of enabling the diverse implementations of PeSIT to inter-
operate, several PeSIT user profiles have been defined which correspond with
the different distinct application domaines of PeSIT.

Four profiles (SIT, Non-SIT, Secure Non-SIT and ETEBACS) are described in
these specifications. Others may be defined if the need becomes felt though the
proliferation of profiles is not encouraged.

JULY 1989 PaSIT VERSION 1 CHAPTER1 3
1.2 Presentation
1.2.1 Qutline

The first chapter presents the Introduction 1o this document.
Having presented the outline, a second paragraph details the

modifications introduced by the version £1 compared to the version D
of 15 november 1987.

The second chapter Architecture and functional
description, compares PeSIT with the 1SO/OS! reference model,
introduces the virtual file concept and summarizes the different
functions provided by PeSiT. This chapter terminates with an
introduction to the concepts of the functional unit and the profile.

The third chapter PeSIT service description commences wilh
a presentation of the concept of service, lists the different service
phases in PeSIT, followed by the different services which make up the
PeSIT service. The functional units are defined as a collection of
services and the concept of profile is further detailed. The paragraphs
Description of the service primitives and Description of
the parameters presents the service primitives one by one with
their parameters, except for those directly related to the Security
functional unit. The paragraph Profile descriptions details the
characteristics of each profile. The paragraph PeSIT security
service covers all aspects of the service linked with the Security
functional unit (both the primitives and the parameters). The last
paragraph Examples of primitive sequences presents the
characteristic automates of the PeSIT service and gives some
examples of primitive sequencing.

The fourth chapter Description of the PeSIT protocol
describes the correspondance between the service primitives and the
protocol units. The paragraph Use of the communication system
service presents the different types of interface for PeSIT.F,
PeSIT.F, PeSIT.F" and PeSIT.F". This is followed by the procedures
corresponding with each protocol unit (FPDU). The succeding
paragraphs give the rules for concatenating FPDUs and the use of the
protocol time-outs. The paragraph Structure and coding of
PeSIT protocol units presents the parameter coding conventions,
lists the parameters and for each one schematizes its format for each
of the four profiles. Following this the contents of each parameter is
detailed for each profile. The last paragraph provides the automate
state tables for the PeSIT protocol.

Annexe A defines the different compression modes allowed and the
method used to negotiate the compression mode between two partners.
Annexe B defines how to use PeSIT in a Store and Forward mode.
Annexe C details the use of the security mechanisms (ETEBACS and
Secure Non-SIT profiles).

Annexe D contains the list of the error diagnostics.

Annexe E summarizes the protocol units and their parameters.

1 References in this document to previous versions of PeSIT are to the
French versions (the version E is the first version translated into
Enpglish).

JULY 1989

PeSIT VERSKON 1 CHAPTER 1 4

1

.2,

Modifications introduced by the Version E

The concept of functional units and profiles has been added in the
version E to clarify the presentation of the document. The increase in
the number of parameters whose format is dependant on the profile
has led to presenting each parameter on a separate page allowing its
format and significance to be detailed for each profile. This
modification means that the presentation of contents of the FPDUs has
also been changed : for each profile the FPDUs are represented as a
collection of parameters whose graphical representation defines their
use (required, optional with or without a default value, conditional).
However the contents of the parameters is not shown in the
description of the FPDUs.

In detail the modifications are as follows :
SIT Profile

The PeSIT protocol described in this document using the SIT profile is
identical to the version D of 15 november 1987. All the special
features of PeSIT SIT have been assembiled in the paragraph 3.8.1 and
can be found in the description of the parameters and the protocol
units for the SIT profile. Some details which were absent from the
version D of PeSIT, existing only in internal documents of the SIT
project, have been included in the paragraph 3.8.1 when they were
considered useful for programming a PeSIT product destined to be
connected to the SIT network.

Non-SIT Profile

The Non-SIT profile of the PeSIT protocol has seen the following
moditications compared to the version D of 15 november 1987 :

the password parameter (Pl §) has been enlarged from 2 to 16
bytes and may be modified dynamically,

the access type parameter (Pl 22) can have the value 2 : mixed
access type,

the use of the CRC parameter (Pl 1) has been added in the
FPDU.CONNECT to allow PeSIT to be used with a PAD,

the file type and file name parameters (Pl 11 and P! 12} contained in
the FPDU.SELECT and FPDU.ACK(SELECT) may be different thus
allowing generic selection,

the possibility of using PeSIT in a Store and Forward mode is
described and two parameters have been added : initial caller
identification and final server identification (Pl 61 and Pl 62),

the length of the caller and server identification parameters
{P1 3 and Pl 4} have been increased from 16 to 24 bytes,

the transfer identifier parameter becomes optional in the
FPDU.ACK(CREATE),

JULY 1989

PeSIT VERSION 1 CHAPTER1 5

two parameters have been added key length (Pi 38) and key offset
(Pl 39) to allow the use of indexed file formats,

the aléa and remainder parameters (Pl 24 and Pl 35) have been
deleted,

the length of the free text parameter (Pl 99) has been increased to
254 bytes and becomes optional in the FPDU.ACK(CREATE),

the file identifier parameter (PG! 9) has been added to the
FPDU.ACK(SELECT),

a datagram service has been introduced which uses some new FPDUs
(FPDU.MSG, FPDU.MSGDM, FPDU.MSGMM, FPDU.MSGFM and
FPDU.ACK(MSG)) and a new parameter datagram,

the use of padding in the vertical compression algorithm is
clarified,

the behaviour of a file receiver during the transmission of an
FPDU.TRANS.END or an FPDU.ACK({TRANS.END} is clarified,

the version number (Pl 6) should be used to differentiate between
versions of PeSIT Non-SIT in conformity with the version D and
versions corresponding with the version E.

Securise Non-SIT Profile

This is a new profile. It requires the use of a special set of
parameters which have been introduced in the version E (parameters
Pl 71 to PI 83).

ETEBAC 5 Profile :

This is a nhew profile. It has been defined in collaboration with the
ETEBAC 5 transport ans security work groups of the French CFONB
(French comittee for Bank Organisation and Standardisation) to
satisfy the file transfer requirements in conformity with the ETEBAC
5 standard {Data communication exchange protocol between Banks and
their Customers). ETEBAC 5 is described in a document produced by
the CFONB and available from the GSIT.

JULY 1989 PeSIT VERSION 1 CHAPTER 2

CHAPTER 2

ARCHITECTURE and FUNCTIONAL DESCRIPTION

JULY 1589

PaSIT

VERSIKON 1

CHAPTER 2

2 ARCHITECTURE and FUNCTIONAL DESCRIPTION

2.1

Reference model

Two important basic principles appear in the PeSIT protocol :

* A stable interface with the applications.

* A unique protocol regardless of the different communications layers used.

The dispersed evolution of processing centers has led to the definition of four
versions of PeSIT, which differ uniquely by their interface with the lower

communication layers used.

- PeSIT-F relies on the standardised ISO Session layer for use with a packet

switching network (X-25}.

- PeSIT-F' relies on the standardised 1SO Network layer (CCITT X-25
recommendation).

- PeSIT-F" relies on the NETEX layer developped with the use of Hyperchannel.

- PeSIT-F" relies on the standardised 1SO session layer for use with a local
area network in conformity with the 1SO 8802-3 specification.

The diagram on the following page describes the logical architectural
environnement of PeSIT.

An application prepares and processes the transfered files.

- A transfer monitor orders and controls the transfers.

- A protocol machine {PeSIT) executes the intended dialogue.

Each element uses, directly or indirectly, the file control system.

Only the PeSIT protocol machine is described in this document.

JULY 1989 PeSiT VERSION 1 CHAPTER 2
PeSIT FUNCTIONAL ARCHITECTURE
ol — | APPLICATION
F
C 1
S
- 7 +» | MONITOR
8
Protocol Protocol Protocol Protocol
PeSITF PeSITF PeSIT F” PeSIT F'”
4 3 5 6
ISQO SESSION 1SO SESSION
1SO TRANSPORT TRANSPORT CL 4
NETEX
150

X25

8802.3

JULY 1989 PeSIT VERSION 1 CHAPTER 2 9

The diagram depicts :

1

Program interface between the application and the M.SIT monitor. This stable
interface is essential for the fong term durability of the application software.

The PeSIT protocol which is detailed in the second part of this document.

The group of primitives between the ISO layer 3 and the protocol PeSIT-F' (section
4.3.2 of this document).

The group of primitives between the ISO layer 5 and the protocol PeSIT-F (section
4.3.1 of this document).

The group of primitives between the NETEX layer and the protocol PeSIT-F" (section
4.3.3 of this document}.

The group of primitives between the 1SO session layer and the protocol PeSIT-F"
(section 4.3.4 of this document).

Accesses between the file transfer monitor (M.SIT) and the file control system
(OPEN FILE, READ/WRITE, CLOSE FILE primitives).

Access primitives to the PeSIT service.

JULY 1989

PeSIT VERSION 1 CHAPTER 2 10

2.2

Virtual file model

Existing file systems vary considerably in their implementations of file format
and file storage. It is thus necessary to create a common model of the file for use
by any protocol working in a heterogeneous network environnement. This model
is called the "virtual file". A virtual file enables the inner workings of a file
storage system specific to a particular operating system fo be made transparent
1o the protocol by means of conversion functions which map the local file
description into a standardized file description and vice-versa.

Although the object of a file transfer protocol is to transfer real files, the model
and the protocol are limited to the processing of virtual files. The
correspondance between real files and virtual files is considered to be dependant
on the local instafiation and as such it is not described in this document.

JULY 1989 PeSIT VERSION 1 CHAPTER 2 11
2.3 Functional description of the PeSIT Service and
protocol
2.3.1 PeSIT service functions

PeSIT provides the following functions :

*

writing of a distant file

* reading a distant file

* checkpointing during a transfer

* resuming a interrupted transfer from a negotiated restart point

* resynchronising during a transfer

suspension of a transfer

securitize a transfer

* data compression

2.3.1.1

2.3.1.2

error control

datagram service

Write file

This function allows a user of the PeSIT service 1o
transfer the contents of a file to another user of the
PeSIT service. Prior to transfering the file the sender
must establish a logical link with his partner. The user
who establishes the connection is called the Caller, and
his correspondant is called the Server. In this example
the file data transfer is between the Caller/Sender and
the Server/Receiver,

Read file

This function allows a user of the PeSIT service o
request that another user of the PeSIT service transfer
the contents of a file to him. Prior to transfering the
file the receiving user must establish a logical link
with his partner. The user who establishes the
connection is called the Caller, and his correspondant
is called the Server. In this example the file data
transfer is between the Server/Sender and the
Caller/Receiver.

JULY 1888

PeSIT

VERSION 1 CHAPTER 2 i2

2.3.1.3

2.3.1.4

2.3.1.5

2.3.1.6

Checkpointing

This function allows the sender to set milestones,
called checkpoints, which are numbered sequentially,
during the transfer. The receiver can acknowledge
these checkpoints, which signifies that he has received
and saved the data correctly up to that point. This
mechanism permits a transfer which is interrupted to
be restarted at a position corresponding with one of the
acknowledged checkpoints or from the beginning of the
file.

Transfer recovery

This function allows a calling user to recover an
interrupted transfer. This recovery is possible for a
read or a write transfer, but can only be requested by
the caller. The data receiver determines the checkpoint
from which the transfer can be recovered..

Restart during a transfer

This function allows a user, following a problem
during a file transfer, to request his partner to restart
the transfer from a previous checkpoint. The
difference between the recovery and the restart
services is that the recovery occurs after an
interrupted transfer (with subsequent closure and de-
selection of the file} wheras the restart occurs during
the transfer and the file is still open and selected.

Transfer suspension

This function allows a user to interrupt a transfer
{which implies the closure and de-selection of the
associated file) so as to re-use the existing logical
connection for another transfer of a higher priority.
The suspended transfer will be recovered later by the
recovery procedure.

JULY 1989

PeSIT

VERSION 1 CHAPTER 2 13

2.3.1.7

2.3.1.8

2.3.1.9

2.3.1.10

Transfer security

This function allows users of PeSIT to implement the
following security mechanisms :

* reciprocal authentication of the partners
* confidentiality of the transmitted data

* integrity of the transmitted data

*

reciprocal non repudiation

Data compression

This function allows users to implement the data
compression mechanisms of PeSIT thus reducing the
quantity of data transmitted.

Error control

By using a polynomial error detection algorithm
applied to each PeSIT protocol message, this function
allows the detection of messages which have been
deteriorated by an unreliable transmission medium,

Datagram transfer

This function allows a user of the PeSIT service 1o
transfer a quantite of unstructured information 10
another user of the PeSIT service. The transfer service
information overhead is kept to the minimum
necessary to identify the transfer, and thus with a
minimum of protocol exchanges. The synchronisation,
compression, restart, resynchronisation and
suspension services are therefore not available for
this type of transfer.

However certain security functions may still be used :

* integrity of the transmitted data

* reciprocal non repudiation

JULY 1989

PeSIT VERSICN 1 CHAPTER 2 14

2.3.2

Functional unit concept

The implemention of all the functions described above is not always
necessary to satisty the needs of a PeSIT service user. Thus certain
functions can be omitted in certain implementations of the protocol.
To standardize the functions which can be omitied the functions are
organized into functional units:

The functional units are :

Kernel : the kernel contains all the services necessary for the
establishment and the termination of a logical link between two users
of the PeSIT service {(PeSIT connection).

Write : this functional unit contains all the services necessary to
write a distant file.

Read : this functional unit contains all the services necessary to read
a distant file.

Checkpointing : the checkpointing functional unit contains the
services which allow checkpoints to be set during a transfer.

Restarting : the restarting functional unit contains the services
which allow the restarting during a transfer.

Suspension : this functional unit contains all the services which
allow the suspension of a transfer. l.e. which allow the interruption of
a transfer so as to reuse the logical connection for a transfer of a
higher priority.

Datagram : the datagram functional unit contains all the services
necessary to provide the datagram service.

Error contrel : the error control functional unit does not contain
any specific services but implies that the error detection mechanism
be used by the protocol for all the messages sent or received. The user
indicates that this functional unit should be activated by means of a
parameter in the service primitive which requests the connection
with the distant user.

Security : the security functional unit does not comtain any specific
services but implies that the security mechanisms (in patticular the
algorithms) have been implemented in the protocol. It also requires
parameters to be exchanged between the user and the PeSIT service
provider during the different service phases.

JULY 1989

PeSIT VERSION 1 CHAPTER 2 15

2,3.3

Profile concept

The use of the PeSIT protocol by a group of users or for a particular
application can call for a choice of a certain number of functional
units 1o be implemented, of parameters 16 be used and of their values.
These choices constitute a usage profile for the protocol.
Actually four PeSIT usage profiles have been defined :
* the SIT profile
* the Non-SIT profile
the Secure Non-SIT profile
* the ETEBAC § profile
They are differentiated by :
the functicnal units used,
the optional parameters used,
the limit values authorised for certain parameters,
the addressing conventions (such as caller and server

identification) and file naming conventions (types and names ot
files).

JULY 1989

PaSIT

VERSION 1

CHAPTER 3

16

CHAPTER 3

PeSIT SERVICE DESCRIPTION

JULY 1989 PeSIT VERSION 1 CHAPTER 3 17
3 PeSIT SERVICE DESCRIPTION
3.1 INTRODUCTION TO THE SERVICE
3.1.1 Scope
The service model describes the interactions between the user
service entities (the applications) and the service provider entity
(the protocol layer). Information is transtered between the service
user and the service provider by means of service primitives
which may contain parameters.
3.1.2 Partner roles
During a PeSIT session between two users of PeSIT, the dialogue is
always asymmetric, i.e. the two partners fulfil different and
complementary réles. The session originator, named the CALLER, is
the partner who determines the work to be done during the session
and is in the closest contact with the user whose requests are
serviced. The other PeSIT user, named the SERVER, executes the
work proposed by the caller and supplies a report on the work
carried out.
3.2 REGIMES OF THE FILE SERVICE

The PeSIT protocol only allows one file to be transfered at a {ime during a
particular session. Several files can be transfered in parallel if several sessions
are open. _

The work carried out during a PeSIT session can be structured dynamically into
a series of regimes within each other which must be opened in a hierarchical
order and closed in the reverse order. If the session is interrupted or
discontinued prematurely by a user, all the regimes which are still active are
considered to have been implicilly closed.

These regimes fit together as shown in the following schema : a regime defines a
step in the transfer process, within which a certain set of services may be used
while others are prohibited. To exit a regime, the regimes nested within it must
first have been closed.

1 A session is defined as “a logical link established between two
distant PeSIT protocols by means of a commmunication system”

JULY 1989

PeSIT

VERSION 1 CHAPTER 3

18

SERVICE REGIMES

PeSIT regime
FILE SELECTION regime

FILE OPEN regime

DATA TRANSFER regime

TRANSFER

Fiie 1
END DATA TRANSFER

FILE CLOSE

END OF Pesit regime -

FiLE SELECTION regime -

FILE OPEN regime

DATA TRANSFER regime

TRANSFER
File n

END DATA TRANSFER

FILE CLOSE

FILE DESELECT “

END OF Pesit regime

JULY 1989

PeSIT VERSION 1 CHAPTER 3 19

The description of the different regimes is as follows, in hierarchical order
starting from the cutermost layer :

PeSIT regime

Exists between the opening and the closing of the session; this regime creates the
logical link between two conversing users using a PeSIT session.

FILE SELECTION Regime

A file is reserved for the data transfer (between the SELECTION/CREATION and
the DESELECTION of the file). A PeSIT regime may contain zero or more FILE
SELECTION regimes.

FILE OPEN Regime

The current file is ready for data transfer (between the opening and the closing
of the file).

DATA TRANSFER Regime
The file data is transmitted {between the beginning and the end of the transfer).

In a data transfer regime, the PeSIT users adopt the réles of SENDER and
RECEIVER.

3.3 SERVICES OF THE PeSIT FILE SERVICE

The different services which make up the PeSIT service, classified by regime,
are as follows :

PeSIT Regime

PeSIT regime establishment service
PeSIT regime termination service
PeSIT regime user abort service

PeSIT regime provider abort service

FILE SELECTION Regime
File creation service

File selection service

File deselection service

Datagram service

FILE OPEN Regime

File open service

JULY 1989 PeSIT VERSION 1 CHAPTER 3 20

File close service

DATA TRANSFER Regime
Write bulk data file service
Read bulk data file service
Data unit transfer service
Checkpointing service

End of data transfer service
End of transfer service
Cancel data transfer service

Restarting transfer service

3.4 FUNCTIONAL UNITS

The different services are organised into functional units. The functional units
and the services that they require are as follows :

Kernel

The services associated with this functional unit are :
PeSIT regime establishment service

PeSIT regime termination service

PeSIT regime user abort service

PeSIT regime provider abort service

Write

The services associated with this functional unit are :
File creation service

File deselection service

File open service

File close service

Write bulk data file service

Data unit transfer service

End of data transfer service

JULY 1989

PeSIT VERSION1 CHAPTER 3

21

End of transfer service

Read

The services associated with this functional unit are :
File selection service

File deselection service

File open service

File close service

Read bulk data file service

Data unit transfer service

End of data transfer service

End of transfer service

Checkpointing

The service associated with this functional unit is :
Checkpointing service

Restarting

The service associated with this functional unit is :
Restarting transfer service

Suspension

The service associated with this functional unit is :
Cancel data transfer service

Datagram

The service associated with this functional unit is :
datagram service

Security

This functional unit does not require any particular services.
Error control

This functional unit does not require any particular services.

JULY 1989

PeSIT VERSION 1 CHAPTER 3 22

DEFINITION OF A PROFILE
A profile is differentiated by :
the functional units used,

the optional parameters used by the service primitives and therefore by the
protocol elements,

the limit values authorised for certain parameters,

addressing conventions (such as caller and server identification) and file
naming conventions (types and names of files).

The functional units necessary for each profile are described in paragraph 3.8
which also indicates the particular choice of parameters for each profile.

The format of each parameter and of each protocol element of the PeSIT protocol
is detailed in chapter 4, profile by profile.

However for the description of the PeSIT service primitives given in paragraphs
3.6 and 3.7 we have preferred not to distinguish the different profiles,
mentioning only which parameters are optional. QObviously parameters that are
optional in a general description may become either mandatory or prohibited in
a particular profile ; the detail is given in chapter 4.

To enable the Security functional unit, whose transfers require a global
understanding and whose implementation is specific to certain usages, to be
isolated from the rest of the description we have volontarily omitted all the
parameters related to this functional unit in the general description of the
service primitives (paragraph 3.6} and of the parameters (paragraph 3.7).

The description of the service primitives and their parameters used by the
Security functional unit (specific to the Secure Non-SIT and ETEBACS profiles)
are in paragraph 3.9 : PeSIT SECURITY SERVICE.

JULY 1989 PeSIT

VERSION 1

CHAPTER 3

23

3.6

DESCRIPTION OF THE SERVICE PRIMITIVES

3.6.1 Correspondance between service and primitives

The following table shows the correspondance between the services
and the primitives.

Service primitive | Confirmation| Originator Service name
F.OONNECT YES Caller PeSIT regime establishment
F RELEASE YES Caller PeSIT regime termination
F.ABORT N Caller/Server |User/provider abort
F.CREATE YES Caller File creation
F.SELECT YES Caller File selection
F.DESELECT YES Caller File desetection
F.CPEN YES Caller File open
F.CLOSE YES Caller File close
FWRITE YES Caller Write bulk data
F.READ YES Caller Read bulk data
F.DATA NO Sender Data unit transfer
F.DATA-END ND Sender End of data transfer
F.TRANSFER-END YES Caller End of transier
F.CANCEL YES Catler/Server |Cancel data transfer
F.CHECK YES Sender Checkpointing
F.RESTART YES Sender/Receiver| Restarting transfer
F MESSAGE YES Caller Datagram

JULY 1988

PeSIT VERSION 1 CHAPTER 3 24

3.6.2 Conventions

The SERVICE concept is an abstract notion which defines the
interactions between the PeSIT protocol layer and the user at either
end of the logical link. It is defined by a number of service
PRIMITIVES.

Four types of primitives exist :

the request primitive : a user invokes the corresponding service,

the indication primitive : a user is informed, by the service
provider, that a service request has been received,

the response primitive : a user responds to a corresponding service
indication,

the confirmation primitive : a user is informed by the service
provider, that a response has been received.

Each elementary service is made up of a combination of primitives as
the figures below illustrates :

SERVICE WITH CONFIRMATION

USER A PeSIT PROTOCOL USER B
request = ——i—a ———» indication
confirmation ~*—T~— ~*—T— response
SERVICE WITHOUT CONFIRMATION
request T ™ — 1™ indication

Each service element is defined by :
- its function,
- the associated parameter table.

For each parameter, a "+" in the corresponding column indicates that
the parameter may be used in the corresponding primitive.

The parameters are described in paragraph 3.7.
In the parameter table, a number in brackets, next 1o a parameter,

e.g. "(§1)" indicates the sub-paragraph of paragraph 3.7 which
describes the parameter.

JULY 1989

PeSIT VERSION 1 CHAPTER 3 25

3.6.3 Description of the primitives

a) F.CONNECT Service

* Function

This service element allows a logical link to be set up between two
PeSIT service users. The user who initiates the F.CONNECT request
primitive becomes the caller and the user who receives the
F.CONNECT indication primitive becomes the server. The caller is
responsable for the connection until it is cleared-down. If the
connection cannot be established then a diagnostic code informs the
caller of the reason.

During the connection establishment phase certain options (use of
functional units) are negotiated. This negotiation covers :

- the access type "read”, "write" or "read/write” (Read and Write
functional units),

- the checkpoint option (Checkpointing functional unit},

- the restarting (whether the Restarting data transfer functional
unit will be used},

- use of a polynomial error detector {Error Control functional unit).

The Caller indicates the functional units that he can support in the
F.CONNECT request and the server replies with the intersection
between these functions and his own capacities in the F.CONNECT
response. The version of the protocol to be used is also negotiated at
this stage.

* Parameter table

PARAMETER FCONNECT F.CONNECT
request/indication |[response/confirmation

(§a) CRCUsage +
(§b) Diagnostics +
(§c) Caller identification +
{§c) Server identification +
{§d} Access control + +
{§e} Version number + +
{§f) Option : checkpoint + +
(§q) Access type +
(§r) Restarting + +
(§t) Protocol monitoring time-out +

(optional)
(§w) Diagnostic complements +

(optional)
(§ab) Free text {optional} + +

JULY 1989 PeSIT VERSION 1 CHAPTER 3 26
b) F.RELEASE Service
* Function
This service element allows a logical link between two PeSIT service
users to be cleared down. Only the calling user may initiate the
F.RELEASE request primitive during the connection as long as a file is
not selected.
* Parameter table
PARAMETER F.RELEASE F.RELEASE
request/indication [response/contirmation
{§b} Diagnostics +
{§w) Diagnostic complements +
(optional}
{§ab) Free text (optional) + +

¢} F.ABORT Service

* Function

This service element allows a logical link between two PeSIT service
users to be brutally and unconditional cleared down while
abandonning any current activity.

Once an F£.ABORT service element has been initiated or received any
transfer regime which is open should be closed.

Either the caller or the server may initiate the F.ABORT request
primitive at any time during a connection.

The F.ABORT service is not confirmed.

* Parameter table

PARAMETER FABORT
request/indication

(§b) Diagnostics +
{§w) Diagnostic complements +
(optional}

JULY 1989

PeSIT VERSION 1 CHAPTER 3 27

d) F.CREATE Service
* Function

This service element aliows a new file to be created and o select it 10
receive a file to be transfered (write transfer).

Only the calling user may initiate the F.CREATE request primitive and
only during the connection regime, as long as the access type selected
during the connection was "write" or "read/write”.

The server user upon receiving an F.CREATE indication creates the
file and selects it prior to responding with an F.CREATE response
primitive. If the create fails the F.CREATE response primitive is
negative and the diagnostic parameter indicates the reason for the
failure.

Maximum size of a data unit

During the file selection regime the maximum size of a data unit is
negotiated and the resulting value is passed on to the communication
layer :

- the caller proposes the size that he wishes to use in the F.CREATE
request primitive,

- the server replies in the F.CREATE response primitive with the
maximum size accepted, which should be less than or equal to the
requested size.

Within the limit of this maximum size it is possible 10 concatenate
several FPDUs into a single data unit passed on to the communication
layer. The concatenation rules are given in paragraph 4.5,

It should be noted that if the Segmentation functional unit is not used
then the maximum data unit size must be greater than or equal to the
sum of the maximum article size of the file to be transfered and the
FPDU header (six bytes).

Transfer identifier

The transfer identifier parameter in the F.CREATE request primitive
should be set to a non zero value by the caller if the transfer is new
(not recovered). The server may provide a different (non zero)
transfer identifier in the F.CREATE response primitive. The use of
the transfer identifier parameter in the F.CREATE response
primitive is not fixed. If the transfer is recovered then the caller
indicates the same transfer identifier in the F.CREATE request
primitive as he originally used in the first attempt.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 28

Transfer recovery

The recovery facility is intended to avoid resuming a transfer which
was suspended or cancelled prior to the end of the deselection regime,
from the beginning. The recovery may occur during the same
connection or at a later moment. In either case the file whose transfer
is to be recovered may be selected and reopened with the same
parameters as in the original transfer. The recovered transfer
parameter, in the F.CREATE service, indicates if the transfer is new
or a recovered transfer. For a write transfer, the point of recovery
is negotiated by the FWRITE service.

* Parameter table

PARAMETER F.CREATE F.CREATE
request/indication [response/confirmation
(§b) Diagnostics +
(§g) File identifier + +
(§h) Transfer identifier + +
(§j) Recovered transter +
{§k) Datacoding +
(§1) Transfer priority +
(§s) Maximum size of a data unit + +
{§w) Diagnostic complements +
(optional)
(§x) File atitributes +
(§y) Customer identitier {optional) +
{(§y) Bank identifier {optional) +
(§z) File access control {(optional) +
{§aa) Server Date and time +
{optional)
{§ab) Free text {optional) +

e) F.SELECT Service
* Function

This service element allows an existing distant file to be selected for
reading (read transfer}.

Only the calling user may initiate the F.SELECT request primitive and
only during the connection regime, as long as the access type selected
during the connection was "read” or "read/write".

JULY 1889

PeSIT VERSION 1 CHAPTER 3 29

Transfer recovery

In the same way as a write transfer, a read transfer may be
recovered. The recovery facility is intended to avoid resuming a
transfer which was suspended or interrupted prior to the end of the
deselection regime from the beginning. The recovery may occur
during the same connection or at a later moment. In either case the
file whose transfer is to be recovered may be selected and reopened
with the same parameters as in the original transfer. The recovered
transfer parameter, in the F.SELECT service, indicates if the
transfer is new or a recovered transfer. For a read transfer, the
point of recovery is negotiated by the F.READ service.

File identifier

In the F.SELECT request primitive, the file name parameter may be
either the real file name or a wild card file description which allows
the server to search for a generic file name which satisfies various
parameters (e.g. version number, creation date). Even the file type
parameter, in the F.SELECT request primitive, may indicate either a
precise file type or a generic file type. When generic parameters are
used the server should indicate in the F.SELECT response primitive
either that no file satisfied the selection criteria supplied by the
caller or the complete name of the file selected.

It should be noted that for generic requests, each transfer concerns
only one unambiguously identified file (for the partners and dates
provided) identified by the file type and name parameters given in
the F.SELECT response primitive. Consequently, the file type and
name parameters will be different in the request primitive and in the
response primitive.

Transfer identifier

The transfer identifier parameter in the F.SELECT request primitive
should be set to zero by the caller if the transfer is new (not
recovered). The server will provide a (non zero) transfer identifier
in the F.SELECT response primitive. If the transfer is recovered then
the caller indicates the same transfer identifier in the F.SELECT
request primitive as was originally provided by the server during
the first attempt.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 30
* Parameter table
PARAMETER F.SELECT F.SELECT
request/indication |response/confirmation
(§b) Diagnostics +
{§g) File identifier + +
{§h} Transfer identifier + +
{§i) Requested attributes +
{§i} Recovered transfer +
(§k} Datacoding +
(§1) Transfer priority +
(§s) Maximum size of a data unit + +
(§w) Diagnostic complements +
{optional}
(§x) File attributes +
(§y) Customer identifier (optional) +
(§y) Bank identifier (optional) +
{§z) File access control {optional) +
{§aa) Server Date and time +
(optional)
{§ab) Free text (optional) +

f) F.OPEN Service

* Function

This service element allows a file to be open.

Only the calling user may initiate the F.OPEN request primitive after
selecting the file. The server user upon receiving an F.OPEN
indication primitive should open the file which was previously
selected prior to responding with an F.OPEN response primitive.

The data presentation is negotiated during this phase. The possible
options are :

* compression

The caller indicates in the F.OPEN request primitive whether he
wishes to use data compression and the algorithm to be used for the
current transfer. The server replies indicating in the F.OPEN
response primitive whether he can provide the compression facility
and the algorithm requested. The details of the compression
algorithms and the rules of negotiation of these algorithms are given
in Annexe A.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 31
* Parameter table
PARAMETER F.OPEN F.OPN
request/indication {response/confirmation
{§b} Diagnostics +
(§p} Compression + +
(§w) Diagnostic complements +
{optional)
g) F.CLOSE Service
* Function
This service element allows a file which was previously open to be
closed. Once this service element has been initiated or received, no
other service element may be initiated prior to receiving the F.CLOSE
response. A request to close a file may not be refused.
Only the calling user may initiate the F.CLOSE request primitive.
Upon receiving the F.CLOSE indication primitive, the server user
should stop any actions under way and close the file prior to
responding with an F.CLOSE response primitive.
* Parameter table
PARAMETER F.CLOSE F.CLOSE
request/indication [response/confirmation
(§b} Diagnostics + +
{§w) Diagnostic complements + +
{optional)

h) F.DESELECT Service
* Funetion

This service element frees up the association between the caller and
the selected file. A deselect may not be refused.

Only the calling user may initiate the F.DESELECT request primitive
upon a previously selected file. Upon receiving the F.DESELECT
indication primitive, the server user should free up the current file
prior to responding with an F.DESELECT response primitive.
Following a deselect, the file is preserved and may be re-selected.

JULY 1989

PaSIT VERSION 1 CHAPTER 3 32

* Parameter table

PARAMETER F.DESELECT F.DESELECT

request/indication [response/confirmation

(§b) Diagnostics + +
(§w) Diagnostic complements + +
(optional)

i) F.READ Service
* Function

This service element allows a read data transfer to be initiated on a
file from a particular point (start of the file or a recovery point).
The F.READ service may only be initiated by the calling user
following a select and file open regime. F.READ implies that the file
data will be transfered from the server user to the calling user.

Recovery point negotiation

During this phase the recovery point is negotiated if the F.SELECT
service requests that this transfer be recovered. The recovery point
is determined by the file receiver who knows how much data has been
correctly received. The recovery point parameter is in the F.READ
request primitive. It should be either zero (recovery from the
beginning of the file} or greater than or equal to the last checkpoint
acknowledged by the calling receiver. The data sender therefore need
keep only the context related to the checkpoints which have not been
acknowledged. The server sender may indicate in the F.READ responss
primitive (diagnostic parameter) that he is unabie to recover the
transfer from the recovery point requested by the caller.

* Parameter table

PARAMETER F.READ F.READ

request/indication |response/confirmation

{§b} Diagnostics +
(§m} Restart point +
{§w} Diagnostic complements +

{optional)

JULY 1989

PeSIT

VERSION 1 CHAPTER 3 33

j) F.WRITE Service
* Function

This service element allows a write data transfer to be initiated on a
file from a particular point (start of the file or a recovery point).
The F.WRITE service may only be initiated by the calling user
following a select and file creation regime. F.WRITE implies that the
file data will be transfered from the calling user to the server user.

Recovery point negotiation

During this phase the recovery point is negotiated if the F.CREATE
service requests that this transfer be recovered. The recovery point
is determined by the file receiver who knows how much data has been
correctly received. The recovery point parameter is in the F.WRITE
response primitive. It should be either zero (recovery from the
beginning of the file) or greater than or equal to the last checkpoint
acknowledged by the server receiver. The data sender therefore need
keep only the context related to the checkpoints which have not been
acknowledged.

* Parameter table

PARAMETER

F.WRITE
request/indication

F.WRITE
response/confirmation

——
wWnen o

E30

e

Diagnostics

Recovery point
Diagnostic complements
(optional}

k) F.DATA Service
* Function

This service element aliows a file data article to be transfered from
the sender to the receiver.

Only the sender user {who may be the caller or the server depending
on the initialization of F.READ or F.WRITE) may initialize the F.DATA
resquest primitive.

F.DATA is not acknowledged.

* Parameter table

PARAMETER F.DATA

request/indication

(§ac) File article +

JULY 1989

PeSIT VERSION 1 CHAPTER 3 34

I) F.DATA.END Service
* Function

This service element flags the end of data transfer. It is initiated only
when all the file data has been transfered.

Only the sender user may initialise the F.DATA.END request
primitive.

F.DATA.END is not acknowledged.

* Parameter table

PARAMETER F.DATA.END
request/indication

(§b) Diagnostics +
(§w) Diagnostic complements +
(optional)

m) F.TRANSFER.END Service
* Function
This service element flags the end of the data transfer regime.

Only the calling user may initialise the F.TRANSFER.END request
primitive.

Note

When the caller is sender, this request follows the F.DATA.END
primitive, and the response, returned by the server, is an implicit
acknowledgement of ail the checkpoints. Specifically this primitive
indicates that all the data have been received and written to file by the
server.

For a caller receiver, the request is sent after the F.DATA.END has
been received and constitutes an acknowledgement of all the
checkpoints. Specifically this primitive indicates that all the data
have been received and written to file by the caller.

JULY 19849 PeSIT VERSION 1 CHAPTER 3 as
¥ Parameter table
PARAMETER F.TRANSFER.END F.TRANSFER.ENDA

request/indication

Iresponse/confirmation

b} Diagnostics

u} Number of data bytes (optional

v} Number of articles (optional)

w} Diagnostic complements
(optional}

(§
(§
(§
(§

+ 4+ + +

n) F.CANCEL Service

* Function

This service element allows a data transmission to be interrupted
during the transfer regime.

Either the caller user or the server user may initiate the F.CANCEL

request primitive.

* Parameter table

PARAMETER

F.CANCEL
request/indication

F.CANCEL
[response/confirmation

{§b) Diagnostics

(§n} End of transfer code

(§w) Diagnostic complements
(optional)

o) F.CHECK Service

* Function

This service element allows checkpoints to be set on the data
transferred. Only the sender user may initiate the F.CHECK request
primitive during the data transfer regime. It can only be used if the
Checkpointing functional unit was accepted during the connection
regime.

During the connection negotiations the maximum number of bytes
which may be transmitted between two F.CHECK services is
determined as well as the rules for confirmation of the service.

The F.CHECK service is not acknowledged if, during the negotiations
on the use of the Checkpointing functional unit, the window was set to
zero. Otherwise the window determines the number of F.CHECK
service primitives which may be issued successively without waiting
for the reception of a confirmation primitive.

JULY 1989

PeSIT VEREION 1 CHAPTER 3 38

Each F.CHECK primitive need not be confirmed individually as the
confirmation of a checkpoint implicitly confirms all the previous
non-confirmed checkpoints.

Prior 1o sending an F.CHECK response primitive the receiver must
flush write all the data received to file.

* Parameter table

PARAMETER F.CHECK F.CHECK

requast/indication |response/confirmation

(§o} Checkpoint number + +

p) F.RESTART Service
* Function

This service element allows a transfer to be restarted from a
previous checkpoint. It can only be used if the Checkpointing and
Restarting functional units have been selected during the connection
regime. Either the caller or the sender may initiate the F.RESTART
request primitive during the data transfer regime. Following
acceptance by the partner of the restart point, the data transfer
continues from this point without leaving the data transfer regime.

Restart point negotiation

The restart may be either from the beginning of the file (restart
point 0) or from any of the checkpoints prior or equal to the last
acknowledged checkpoint. The restart point to be used is determined
by negotiation between the F.RESTART request and response
primitives. It is always the receiver who determines the restart
point.

The receiver who requests a restart should indicate the requested
restart point in the F.RESTART request primitive (above or equal to
the last confirmed checkpoint) and the sender may either accept to
continue from this point (F.RESTART response primitive with the
same restart point as requested in the F.RESTART request primitive)
or impose a restart from the beginning of the file (F.RESTART
response primitive with a zero restart point).

The sender who requests a restart should indicate the requested
restart point in the F.RESTART request primitive {above or equal to
the last received checkpoint confirmation) and the receiver may
either accept to continue from this point or from a later point
(F.RESTART response primitive with a restart point greater than or
equal to the restart point requested in the F.RESTART request
primitive} or impose a restart from the beginning of the file
(F.RESTART response primitive with a zero restart point).

Note

The restart point is conveyed by the recovery point parameter.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 37

* Parameter table

PARAMETER F.RESTART F.RESTART
request/indication |response/confirmation

{§b) Diagnostics +
{§m} Recovery point + +
{§w) Diagnostic complements +

{optional)

q) F.MESSAGE Service

* Function

This service element allows a user of the PeSIT service to send a
quantity of unstructured information to another user of the PeSIT
service. Only the calling user may initiate the F.MESSAGE request
primitive during the connection regime.

The F.MESSAGE service is acknowledged.

* Parameter table

PARAMETER FMESSAGE FMESSAGE
request/indication [response/confirmation

Diagnostics +

File identifier

Transfer identifier

Requested attributes

Data coding

} Diagnostic complemenis +
(optional)

x) File attributes

y) Customer identifier (optional)

y) Bank identifier (optional)

ad) Datagram (optional}

+ + + +

§
§
§
§
§

— Qg
E EUV“H’V

. "

+ 4+ + +

§
(§
(§
(§
(§

JULY 1989

PeSIT VERSION 1 CHAPTER 3 38

DESCRIPTION OF THE PARAMETERS
a) CRC Usage

This parameter indicates if a polynomial error detection checksum (CRC) is
added to each FPDU to check the validity of these messages (see §4.3.2). This
parameter is mandatory for use of the protocol with a PAD.

b) Diagnostics

This parameter indicates the gravity and the type of error encountered. It is
made up of two fields :

- error type which indicates the gravity of the error,
- diagnostic code which gives the detail of the type of arror.

The list of the diagnostics is given in Annexe D and shows within which service
primitives they may occur.

c) Caller and server identification

This parameter specifies the name of the caller and server users.

d) Access control

The access key allows reciprocal identification of the caller and the server
(password). if a user wishes to modify his password, the new one is put in the
access control parameter after the password which is to be replaced.

e) Version number

Version number of the software. If an incompatibility exists between the version
indicated in the F.CONNECT request primitive and the version supported by the
server then the server may refuse the connection. The server may also suggest a
previous version of the protocol in the F.CONNECT response primitive in which
case the caller may either close down the logical link or accept the version
suggested by the server.

Version number 1 corresponds with the protocol described in the version D of
the PeSIT technical specifications dated 15 November 1987.

Version number 2 corresponds with the protocol described in the current
version E of the PeSIT technical specifications dated 14 July 1989.

JULY 1989

PeSIT VERSION 1 CHAPTER 3 39

f) Option : checkpointing

This parameter allows the Checkpointing functional unit to be negotiated.
- interval between two checkpoints :

* 0 in this field indicates : no checkpoints,

* 65535 in this field indicates : undsfined interval

* any other value indicates the maximum number of bytes of the file (expressed
in kilo-bytes, 1 kilo-byte = 1024 bytes) that the sender may transmit
between two consecutive checkpoints. This value includes only the data fields of
the FPDU.DTF (not counting the header) and excluding the article length fields of
multi-article FPDUs. However if compression is used then the data is counted
after compression and includes the compression headers (if present).

- window :

L]

0 in this field indicates : no acknowledgement of checkpoints required,
" a non zero value defines the size of the window for acknowledging checkpoints.
The window defines the greatest difference allowed between :

- the number of the last checkpoint transmitted,
- and, the number of the last checkpoint acknowledged.

Once the window is full, data transmission is suspended until a checkpoint
confirmation is received. When the window is larger than one, each checkpoint
need not be explicitly acknowledged, as a confirmation implicitly acknowledges
all the previous checkpoints.

Negotiation of the checkpoint option

The negotiation takes place during the connection regime. The caller proposes the
values that he wishes to use, and the server replies with the negotiated values
using the following rules :

- if both parties wish to use checkpoints then the option is selected. Otherwise
the option is refused.

- if the option is selected, the server may decide on values for the checkpointing
interval and the window which are less than or equal to those suggested by the
caller.

JULY 1989

PaSIT VERSION 1 CHAPTER 3 40

g) File identifier

This parameter is exchanged between the caller and the server during the file
selection phase and makes up the file identification. A non-ambiguous file
identification may require other parameters depending on the profile used : see
§3.8.

The file identifier is composed of :

- caller identification : optional parameter, if absent the previous known value
is taken from either the connection regime or the last selection regime in which
it was given. If present, its value may be different from the value given during
the connection regime or by a preceding selection regime in which case the new
value is adopted until the connection is cleared-down or a different value is
given in & succeding file selection regime.

- server identification : optional parameter, its use is governed by the same
rules as the caller identification.

- file type : this parameter defines the file class type : its use is determined by
each particular profile.

- file npame : this parameter allows the correct identification of a file within
the file type.

For a read transfer the file type and file name parameters may be of a generic
form in the F.SELECT request primitive specifying a group of files. In this case
the file type and file name parameters returned in the F.SELECT response
primitive will be different and will describe a single file out of the generic
group description. If the server does not find any files corresponding with the
generic description then the F.SELECT response primitive will be negative.

h) Transfer identifier

This parameter has a numeric value which allows the transfer to be identified.
For a recovered transter the transfer identifier should be identical to that used
during the initial transfer.

For a write operation the transfer identifier is chosen by the caller (non zero
value in the F.CREATE request primitive).

For a read operation the transfer identifier is chosen by the server. The caller
should set a zero transfer identifier (except for a recovery) in the F.SELECT
request primitive. The server will determine the value of the transfer identifier
(non-zero} in the F.SELECT response primitive. For a recovered read operation
the caller puts the same transfer identifier as was chosen by the server during
the initial transfer in the transfer identifier field and the server should
response with the same value.

JULY 1989

PeSIT VERSION 1 CHAPTER 3 41

i) Requested attributes

Indicates the file attributes which should be included in the response to a caller.
They are made up of any combination (even nul} of the following categories :
logical, physical and historical.

) Recovered transfer

This parameter indicates that the transfer is a retry of a previous unfinished
transfer. The recovery is always initiated by the caller however it is the
receiver who determines from which recovery point the transfer will be
continued.

k) Data coding

This parameter indicates the type of coding used for the data in the file to be
transfered. The possible values are : "binary" (transparent transmission),
"ASCII" or "EBCDIC".

1) Transfer priority

This parameter determines the relative priority given to a transfer by the
caller.

m) Recovery point

This is the checkpoint number which allows a recovery or a restart to take place
from a particular point in a file. The value is determined by the receiver, in an
F.WRITE response primitive for a write operation and in an F.READ request
primitive for a read operation. A zero value is used to indicate the beginning of
the file.

n}y End of transfer code

This code gives the reason for terminating data transfer in an F.CANCEL
primitive. The possible values are :

- Error

- Suspension

- Cancellation by the server
- Canceklation by the caller

o) Checkpoint number

A numeric value which identifies a checkpoint un-ambiguously. It is
incremented by one at each successive F.CHECK primitive, starting from 1 for
the first checkpoint. The maximum value is 999 999,

JULY 1989

PeSIT VERSION 1 CHAPTER 3 42

p) Compression

This parameter allows the use of compression during the transmission of file
data to be negotiated during the open regime. The possible types of compression
are :

- horizontal compression,

- vertical compression,

- both.

The details of the negotiation mechanisms and the compression algorithms are
given in Annexe A.

q) Access type

Indicates the type of access allowed during the transfer viz: "Read, Write or
Read/Write".

- Read : when the caller is sender.

- Write : when the server is sender.

- Read/Write : used when both send and receive transfers may occur in the
same connection.

r) Restarting

This parameter is used to negotiate the Restarting functional unit during the
connection regime (use of the F.RESTART service).

$) Maximum size of a data element

This parameter specifies the maximum number of bytes that may be transported
in a data unit (NSDU, SSDU, ...). lts value is negotiated during the file selection
regime. The caller proposes a maximum value and the server replies with a
value which is less than or equal to this value. The values selected for the
maximum data element size and maximum article size determine the use of the
segmentation, concatenation and multi-article FPDU mechanisms.

t) Protocol monitoring time-out

This parameter allows the value of the protocol monitoring time-out to be used
for a connection to be negotiated during the connection regime.

u) Number of data bytes

This parameter gives the total number of bytes (less the length fields for multi-
article FPDUs but including compression string headers) which were

transmitted or received during the transfer regime of a file. It is used by the
F.TRANSFER.END service primitives as a check value.

JULY 1989

PeSIT VERSION 1 CHAPTER 3 43

v) Number of articles

This parameter gives the number of articles transmitted or received for a file
during the file transter regime. It is used by the F.TRANSFER.END service
primitives as a check value.

w) Diagnostic complements

This parameter contains complementary information following a refusal
diagnostic {explanation of a format error, call back time, backup number, etc.).

X) File attributes

This parameter contains the characteristic parameters of a file. There are three
type of file attributes : logical, physical and historical.

* logical attributes
These are the characteristics which allow access to the file :

- article format :
specifies the format of the articles in the file. The permitted values are : fixed
or variable.

- article length :
specifies the length in bytes of an article in the file. It is the exact length for a
fixed format file and a maximum length for a variable format file.

- file organisation :

describes the organisation of the data within the file and thus the access method
to be used for the file transfer. The possible values are : sequential, relative or
indexad.

- digital signature usage :
determines whether the file is covered by a SIT MAC.

- SIT MAC :
present for files transmitted by a SIT station towards a Bank Processing Center.

- file label :
may be used to associate a symbolic name with a file.

- key length :
contains the key length in bytes for an indexed file format.

- key offset :
contains the offset of the key relative to the beginning of an article for an
indexed file format.

JULY 1989

PeSIT VERSION 1 CHAPTER 3 44

* physical attributes

These are the physical characteristics of the file :

- storage reservation unit:

defines the unit used when reserving space for a file. The units possible are :
kilo-bytes or articles.

note :
Units will be used in the following way :

. kilo-bytes for tiles with variable length articles,
. articles or kilo-bytes for files with fixed length articles.

- maximum reserved space:
defines the maximum size that the file may not exceed.

* historical attributes

These parameters characterise the past history of the file

- date and time of creation :

- date and time of last access :

the date when the last transfer was completed whether normaily or following an
interruption.

y) Custiomer and bank identifiers

This parameter contains the identification of the client or the bank for whom the
transfer was performed.

z) File access control

Access key allowing the client to be identified by the bank. This password is
exchanged during the selection regime and is thus associated with the file. If a
user wishes to modify his password, the new one is put in the file access control
parameter after the password which is 10 be replaced.

aa) Server date and time

This parameter contains the date and time as known by the server when the file
was selected.

ab) Free text

This parameter allows a message (string of ASCII characters) to be passed from
one service user 1o another during the execution of one of the transfer regimes.

JULY 1989

PaSIT

VERSION 1

CHAPTER 3

45

3.8

ac) File article

This parameter contains the data of a file article. The correspondance between an
article in the virtual file and the record in the real file is the responsability of
the local installation.

ad} Datagram

This parameter allows a message to be passed from one service user to another

using the specific datagram service.

PROFILE DESCRIPTIONS

3.8.1 SIT profile

The SIT profile is specified by :
* the functional units :

Kernei
Write
Checkpointing

* the limit values of certain parameters :

Option - checkpointing : the interval between two checkpoints should
be greater than or equal to 4 kilo-bytes, the window less than or
equal to 16.

Maximum size of a data element : must be greater than or equal to
800 bytes.

* a specific address system :

the caller and server identifiers are the installation references made
up of :
. 1 byte which indicates the installation type (symbolic value :

1 for CTE,

2 for CTR,

3 for IE,

4 for IR).
. 2 bytes which indicate the installation number within the type
(numeric value).

The CTE and CTR installation types are contained in a Bank Processing
Center, the IE and IR installation types are contained in a SIT station.

JULY 1989

PeSIT VERSION 1 CHAPTER 3 46

It shouid be noted that the concepts of sending installation (IE and
CTE) or receiving installation (IR and CTR) should be considered
relative to the flow of banking operations (e.g. an outbound deposit
may be sent from a CTE to a CTR, via transfers from the CTE to the IE
by PeSIT, from the IE to the IR on the primary network, and from the
IR to the CTR by PeSIT) rather than in the sense of sending or
receiving a file by PeSIT. Consequently any installation (CTE, CTR, IE
or IR} may be, at any particular moment in time, in relation to PeSIT
either a caller/sender or a server/receiver. There are thus four flow
types possible :

CTEto IE

IEto CTE

CTRto IR

IRto CTR

* a file naming convention : the "File name” parameter is a string of
5 ASCII numeric characters. The parameters used by a SIT station to
describe non-ambiguously a SIT file are :

- the sending or receiving installation number (caller or server
identification)

- the file type

- the fite name

- the file creation date

The file type characterises the sort of file to be transfered : outbound
deposits, presentation reports, day end summaries, eic.. The list of
the file types used by the SIT Inter Bank Clearing and SIT Stock
Exchange networks, classified by flow type (IE to CTE, IR to CTR,
etc.) may be found in the "Functional Analysis of ASIT" and "CTB
Commands and Reports® SESA 70296 LP 01 210.

The file creation date is the specific SIT date which may not
correspond with the current system date.

* The three levels of priority defined by PeSIT (0, 1 and 2) are used
in the transfers between a SIT station and the CTBs for each data flow.
The choice of priority for a particular transfer is determined by the
applications using PeSIT.

" The SIT station limits the number of incoming transfers to three
for each installation, regardiess of their priorities.

The SIT station limits also the total number of incoming transfers for
each priority. These limits are set by the GSIT.

* The files transfered between a SIT station and a CTB may be either
fixed or variable format and the maximum size of an article is 4044
bytes (which implies a maximum data element size of 4050 bytes).
The maximum size of an article may not be null.

* The choice of the data coding (ASCII or EBCDIC) for the file contents
is decided as an installation parameter when a user defines its SIT
connection characteristics. The SIT station does not care for the Data
coding parameter (Pl 16). According to the installation concerned,
the station sends or expects to receive files appropriatly coded.

JULY 19889

PeSIT VERSION 1 CHAPTER 3 47

" Data compression is not implemented at the file transfer level.

* The SIT MAC is an encrypted time-stamp associated with the file. It
is only sent for transfers originating from the station to the CTB.
Thus :

For transfers from the CTB to the station : the parameter "Digital
signature usage" has a value of 0 (or is absent} and the parameter
"SIT MAC" is absent. For transfers from the station to the CTB : the
parameter “"Digital signature usage" has the value 1 and the
parameter "SIT MAC" contains the MAC. The deciphering of the MAC
and its validation are carried out by the application.

3.8.2 Non-SIT Profile

The Non-SIT profile is specified by :
* the obligatory functional units :

Kernel
Write
Checkpointing

* the optional functional units

Read
Restarting
Suspension
Datagram
Error control

* At the protocol level, the options of using multi-article FPDUs and
of FPDU segmentation (use of FPDU.DTFDA, FPDU.DTFMA and
FPDU.DTFFA) are allowed. It should be noted that the use of these
options is not negotiated dynamically by the protocol and so should be
determined between the partners in advance.

* addressing : the caller and server identifiers are ASCII strings of 1
to 24 characters chosen by the PeSIT service users.

* the implementation by file transfer monitors using the PeSIT Non-
SIT profile of the "Store and Forward" functions (file re-route) is
possible. This procedure is detailed in Annexe B.

* file naming : the parameter "file name" is a string of one to sixty-
four ASCII characters. The file naming conventions depend on the
PeSIT service users.

" the parameter "file type” should have the value 0 unless a specific
meaning has been decided upon between two file transfer monitors.

" data compression may be implemented at the file transfer level. The
horizontal and vertical compression algorithms are given in Annexe
A

JULY 1989

PeSIT VERSION 1 CHAPTER 3 48

* the pre-connection phase :

The connection phase of PeSIT is preceded by a pre-connection phase,
independant of the PeSIT protocol. This extra phase allows the file
transfer monitors to know which file transfer protocol is being used
as soon as the lower communication layers are ready and also to
identify the caller,

Two messages have been defined for this function :

Message 1 :is composed of 24 bytes :

* the flirst 8 bytes : protocol used (PESIT : 5 characters left
justitied, followed by 3 blanks)

* the 8 following bytes : identifier (1 to 8 characters left justified
and blank padded)

* the last 8 bytes : password

Message 2 : acknowledgement : 4 bytes :

ACKO or NAKO

Both these messages are coded in EBCDIC. They are not part of the
PeSIT protocol elements.

Notice :

When using PeSIT.F', the pre-connection mesages are sent in the
first data packets exchanged immediatly after the virual circuit set
up. This pre-connection phase must, while using PeSIT.F', be
considered as mandatory.

When using PeSIT.F or PeSIT.F", no pre-connection phase is defined.
Nevertheless a 24 byte message similar to message 1 defined above,
may be used :

*in PeSIT.F" in the O-DATA field of the CONNECT primitive

* in PeSIT.F in the user reference field of the S-CONNECT primitive

3.8.3 Secure Non-SIT Profile

The secure Non-SIT profile is identical to the Non-SIT profile except
that the use of the Security functional unit is obligatory in this
profile.

It should be noted that the Security functional unit which is common
to the Secure Non-SIT profile and the ETEBACS profite uses different
encryption algorithms in the two cases and so does not offer exactly
the same security functions.

The Secure Non-SIT profile only requires the use of the DES (Data
Encryption Standard} encryption/MAC computation algorithm.

JULY 1989

PeSIT VERSION 1 CHAPTER 3 49

In this profile the Security functional unit provides :

*

reciprocal authentication

* confidential data transmission

L]

integrity of the transmitted data

Annexe G : Use of Security mechanisms describes how to implement
the security mechanisms for the Secure Non-SIT and ETEBACS
profiles.

Note :

The use of encryption devices for the transmission of coded data
across public data networks is covered by numerous laws which
differ between countries and which users of the Secure Non-SIT and
ETEBACS profiles should take into account prior to selecting these
profiles.

3.8.4 ETEBACS profile

The ETEBACS profile is characterised by :
* the obligatory functional units :

Kernel

Write

Read
Checkpointing

* the optional functional units :

Restarting
Suspension
Security

* The description of the use of the PeSIT protocol by the ETEBACS
transport layer is described in the document : "Computer Information
Exchanges between Banks and their Customers - Standard ETEBACS -
Version 1.1".

* In the protocol chapter of the current document only the format of
the parameters and the protocol elements used in the ETEBACS profile
are described.

* Annexe C : Use of Security mechanisms describes how to implement
the security mechanisms for the Secure Non-SIT and ETEBACS
profiles.

JULY 1989

PeSIT VERSION 1 CHAPTER 3 50

3.9

PeSIT SECURITY SERVICE

3.9.1

3.

9.

2

Functions provided

The security functions required for file transfer are :

L]

reciprocal authentication of the partners

*

confidential data transmission (file contents)

*

integrity of the transmitted data (file contents)
reciprocal non-repudiation

The PeSiTservice and protocol describe the parameters needed to
implement the security mechanisms and the manner they are
exchanged. However the total implementation (algorithms, key
management, cerificate management) are not part of the protocol.
Annexe C of this document describes how to use the security
mechanisms where they have an effect on the protocol.

The security parameters defined in PeSIT are intended to allow the
use of different algorithms to provide the functions listed below. In
the two profiles which use the Security functional unit, it was decided
to use RSA and DES for the ETEBACS profile. The Secure Non-SIT
profile has a reduced function mode where only DES is required. It
should be noted that in this case the reciprocal non-repudiation
function is not available.

The fact that the security is parameterised in the protocol alfows
considerable independance between the different functions. In the
Secure Non-SIT profile each function may be used completely
independantly of the others. In the ETEBACS profile, the reciprocal
non-repudiation requires the integrity function.

The implementation of the security functions may be negotiated for
each file transfer. However it is up to the system designers,
depending on their security requirements, to decide if the security
functions may really be re-negotiated for each transfer, or whether
several consecutive transfer within the same connection should use
the same security parameters.

Description of the primitives

The PeSIT service primitives are described in paragraph 3.6.3
except for the parameters specific to the Security functional unit.
The present paragraph is intended to complete their description by
the aspects related to the implementation of the Security functional
unit.

The rdle of each primitive in the Security functional unit is described
in this paragraph as well as the parameters supplementary to those
described in paragraph 3.6.3.

JULY 1988

PeSIT VERSION 1 CHAPTER 3 51

a) F.CREATE Service
* Function

This service element ailows the caller to instruct the server which
security functions will be used for the following transfer. The caller
indicates which of the following functions will be used :

* reciprocal authentication
* integrity

* confidentiality

* digital signature

It should be noted that a digital signature requires the MAC to have
been calculated beforehand.

The server idicates in a positive or negative F.CREATE response
primitive if he accepts the security functions requested by the caller.

This service element also allows the exchange of certificates and the
authentication elements which make up the reciprocal authentication
of the pariners (the complete reciprocal authentication process uses
the F.OPEN service as well).

The detail of the management of the certificates is given in Annexe C.

If several transters take place in the same connection, the reciprocal
authentication need not be repeated for each transfer. In the same way
the certificates used to transport the keys and the digital signatures
need not be repeated for each transfer within a connection (as long as
the partners concerned, identified by the customer and bank
identifier parameters, do not change). However the indication of the
intention to use the encryption, integrity and digital signature
functions as well as the encryption and MAC elements must be
transmitted prior to each transfer.

* Parameter table

PARAMETER F.CREATE F.CREATE

request/indication |response/confirmation

—_— —
o
Tt

— i — -
o o0
L

i)

wnun W uUn oo ownumn

——

Authentication type (optional) +

Authentication elements + +
{optional)

MAC computation type (optional) +

Encryption type (optional) +

Digital signature type +

(optional}

Certificate {optional) + +

m} Second certificate {optional) +

JULY 1989

PeSIT

VERSION 1

CHAPTER 3 52

b) F.SELECT Service

*

Function

The function of this service element within the Security functional
unit is identical to the F.CREATE service, the choice of the security
functions to be implemented for a transfer is always the
responsability of the Caller whether the file is being sent or

received.

* Parameter table

PARAMETER

F.SELECT
request/indication

F.SELECT
response/confirmation

—
oo
gt S

Wi Ununwn Whup
o @ o

i)

Authentication type (optional) +
Authentication elements +
(optional)

MAC computation type (optional) +
Encryption type (optional) +
Digital signature type +
(optional)

Certificate {(optional} +

m} Second certificate {optional)

¢) F.OPEN Service

* Function

The function of this service element is to allow the exchange of the
third reciprocal authentication element for a write transfer (or the
second and third exchanges for a read transfer). The MAC computation
and encryption elements as well as the certificates that these
exchanges may require may also be exchanged at this time.

The detail of the management of the certificates is given in Annexe C.

* Parameter table

PARAMETER

F.CHECK
request/indication

FCHECK
response/confirmation

(§d) MAC (optional)

JULY 1988

FeSIT VERSICN 1 CHAPTER 3 53

d) F.CHECK Service
* Function
This service element allows partial MACs to be transmitted if this

option has been selected. The partial MACs are the results of the
intermediary MAC computations carried out on the entire file (plus

certain identification parameters of the file).

* Parameter table

PARAMETER

F.OPEN

request/indication

F.OPEN

response/confirmation

(§b)
(§d)
(§1)

(§i)
(§m)

Authentication elements +

(optional}

MAC computation elements + +
{optional}

Encryption elements (optional + +
Certificate (optional) +

Second certificate (optional) +

e) F.DATA.END Service

* Function

This service element allows the MAC, the digital signature and a
possible second digital signature to be transfered.

* Parameter table

PARAMETER

F.DATA.END

request/indication

(§h)} MAC (optional} +
{§i) Digital signature {optional) +
(§1) Second digital sighature +

(optional)

f) F.TRANSFER.END Service

* Function

This service element allows the acknowledgement of the digital

signature to be transfered.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 54
* Parameter table
PARAMETER F.TRANSFER.END F.TRANSFER.END

request/indication

response/confirmation

(§k) Acknowledgment of the digital

signature (optional)

q) F.MESSAGE Service
* Function

This service element contains a message which may be protected by
the security mechanisms.

The functions which may be implemented with this service are :

* integrity
* digital signature

The MAC or the digital signature are applied to the message contained
in the F.MESSAGE primitive.

The mechanisms and the parameters required to implement these
functions for the service are identical to those used for a file

transfer.

* Parameter table

PARAMETER

F.MESSAGE
request/indication

FMESSAGE
response/confirmation

§c) MAC computation type (optional) +
§d) MAC computation elements +
{optional)
§g) Digital signature type {optional) +
§h} MAC (optional) +
§i) Digital sighature (optional) + +
§i) Certificate (optional) + +
§ k) Acknowledgment of the digital + +

signature (optional)

JULY 1989

PeSIT VERSION 1 CHAPTER 3 55

3.

9.3

Parameter description
a)Authentication type

This parameter indicates whether an authentication procedure will be
used and which mechanisms will used within it.

- authentication (yes/no)
- used algorithm
- operating mode

b)Authentication elements

This parameter contains the elements needed for the authentication of
the partners. Depending on the algorithm and the operating mode
determined by the "authentication" parameter, these authentication
elements will contain either random numbers in plain or encrypted
and/or encrypted keys.

c)MAC computation type

This parameter indicates if the file is to be transfered with a MAC. If
so the parameter indicates which MAC computation algorithm will be
used and its operating mode. The operating mode indicates if there is
only one MAC applied to the entire file or if, as well as the global
MAC, there will be partial MACs transmitted with each checkpoint
(MAC calculated only on the data transmitted since the previous MAC
was transmitted). It is also explicited if the MAC computation
elements are transmitted , in plain or encrypted form, in the "MAC
computation element” parameter. In order to calculate the MAC the
file identifiers (P1 11, PI 12, Pl 51, P1 61 and Pl 62) are used : the
contents of these P| will be treated by the algorithm as if they had
been concatenated to the beginning of the file.

- MAC computation (yes/no)

- used algorithm

- operating mode

- transfer of MAC computation elements

d)MAC computation elements

This parameter contains the elements (key, initialisation vector)
required to initialise the chosen algorithm for computation of the
MAC. This parameter is absent if the elements are transfered by
another means than the protocol. They may be protected by
encryption if this is indicated in the "transfer of Mac computation
elements” field of the "MAC computation type" parameter.

JULY 1989

PaSIT VERSION 1 CHAPTER 3 58

e)Encryption type

This parameter indicates if the file is transmitted in encrypted form,
and which algorithm is used to encrypt it.

This parameter also indicates if the encryption elements are to be
transmitied in the "encryption elements" parameter and the
encryption method to be used (these elements may transit by another
means than the protocol).

- encrypled data (yes/no)

- used algorithm

- operating mode

- transfer of encryption element

f) Encryption elements

This parameter contains the elements (key, initialisation vector)
used to initialise the chosen algorithm for encryption of the file. This
parameter may be absent if one wishes to transfer them by another
means than the protocol. They may be protected by encryption if this
is indicated in the "transfer of encryption element” field of the
"Encryption type" parameter.

g)Digital signature type

This parameter indicates if the file is to be transfered with a digital
signature. Since the digital signing mode used requires the MAC to be
encrypted, this parameter has no sense unless the MAC computation
option has been selected in the "MAC computation type" parameter.
The algorithm indicated in the "used algorithm" field is the algorithm
used to transform the MAC into a digital signature by encryption.
Actually the only algorithm used is RSA. The field "double digital
signature” indicates that a second signature is present. In which case
the second signature will be another encrypted form of the MAC using
a ditferent secret key (whose corresponding public key is provided in
the parameter "second certificate").

- signature type
- used algorithm
- Qperating mode
- double digital signature

h)MAC

This parameter contains the result of the MAC computation . it may be
a partial MAC (an intermediate result of the computation of the global
MAC calculated using the data transmitted since the previous partial
MAC was sent), or the global MAC. In order to calculate the MAC the
file identifiers (Pl 11, Pl 12, Pl 51, Pl 61 and Pl 62) are used : the
contents of these Pl will be treated by the algorithm as if they had
been concatenated in front of the first article in the file.

JULY 1989

PeSIT VERSICN 1 CHAPTER 3 57

i) Digital signature

This parameter contains the digital signature of the file which is an
RSA encryption using the sender's secret key of the concatenation of a
MAC calculated using the Pl 11, P1 12, Pl 51, Pl 61 and PI 62 and
the MAC of the file {(which already includes the above Pl). These two
MACs are calculated independantly but using the same MAC
computation elements.

j)Certificate

This parameter contains an entity's certificate. This certificate is
made up of the entity identifier, the serial number of the certificate
storage device (serial number of a smart card), the entity's public
RSA key, the number of the security manager's RSA key used to sign
the certificate and the digital signature of the certificate {(RSA
encryption under the security manager's secret key of a shadow -
resulting from hash coding the preceding fields of the certificate).

k)Acknowledgment of the Digital signature

This parameter contains a protected acknowledgment of the digital
signature. The acknowledgment is an RSA encryption under its
sender's secret key of the concatenation of the MAC received in the
digital signature, the date and time of the acknowledgment and a
control field describing the security controls made.

I } Second Digital signature

This parameter contains the second digital signature of a file produced
by an identical computation as that used for the “Digital signature”
parameter but using an RSA encryption under another of the sender's
secret keys whose associated public key is contained in the "second
certificate” parameter.

m)Second certificate

This parameter contains a second entity certificate needed when
several certificates are required for the same exchange
(authentication and digital signature or multiple digital signatures).
The structure of this parameter is identical to the "certificate”
parameter.

JULY 1989

PeSIT

VERSION 1

CHAPTER 3 58

3.10 EXAMPLES OF PRIMITIVE SEQUENCES
3.10.1Normal sequence
The normal logical progression of services is illustrated by the
following state diagrams ({figures 1, 2, 3, 4 and 5). The tables which
follow show the restrictions applicable to the sequencing of primitive
events for the caller and the server. These tables also show the valid
primitive events.
FIGURE 1 : SIMPLIFIED STATE DIAGRAM
IDLE
F.CONNECT F.RELEASE
F.ABORT
> CONNECTED -
F.SELECT
F CREATE F.DESELECT
EERaRt FILE g
SELECTED
FOPEN ECLOSE
— DATA TRANSFER o
P IDLE -4
F.WRITE F.READ
F.CANCEL F.CANCEL
F.TRANSFEREND F.TRANSFER.END
WRITE g > READ
FILE g —p- FILE

F.DATA/F.DATA.END
F.CHECK/F.RESTART

F.DATA/F.DATA.END
F.CHECK/F.RESTART

JULY 1889 PeSIT

VERSION 1 CHAPTER 3 59
FIGURE 2 : STATE DIAGRAM
CONNECTION PHASE
6 7
Any state
IDLE +— except “IDLE"
1 3 5
Connection pending Release pending
2 4
CONNECTED

Caller transitions

~l oM —

F.CONNECT request

F.CONNECT confirmation (positive}
F.CONNECT confirmation {negative)
F.RELEASE request

F.RELEASE confirmation

F.ABORT request

F.ABORT indication

Server transitions

~SEO R WM =

F.CONNECT indication
F.CONNECT response (positive)
F.CONNECT response (negative)
F.RELEASE indication
F.RELEASE response

F.ABORT request

F.ABORT indication

JULY 1989

PeSIT

VERSION 1

CHAPTER 3

60

FIGURE 3 : STATE DIAGRAM

SELECTION AND FILE OPENING PHASES

Create file Select file File release
pending pending pending
5 2 7
h 4
FILE SELECTED
9 11 13
Open file Close file
pending pending
DATA TRANSFER

IDLE

JULY 1989 PeSIT VERSION 1 CHAPTER 3 61
TRANSITIONS CALLER SERVER
(figure 3)

1 F.SELECT .request F.SELECT.indication
2 F.SELECT.confirmation {+Ve) F.SELECT.response {+Ve)
3 F.SELECT.confirmation {-Ve} F.SELECT.response {-Ve)
4 F.CREATE.request F.CREATE.indication
5 F.CREATE.confirmation (+Ve) F.CREATE.response (+Ve)
6 F.CREATE.confirmation (-Ve) F.CREATE.response (-Ve)
7 F.DESELECT.request F.DESELECT.indication
8 F.DESELECT.confirmation F.DESELECT.response
9 F.OPEN.request F.OPEN.indication
10 F.OPEN.confirmation {+Ve) F.OPEN.response (+Ve)
11 F.OPEN.confirmation {-Ve) F.OPEN.response (-Ve)
12 F.CLOSE.request F.CLOSE.indication
13 F.CLOSE.confirmation F.CLOSE.response

Note : + Ve : positive
- Ve : negative

JULY 1989 PeSIT VERSION 1 CHAPTER 3 62

FIGURE 4 : CALLER STATE DIAGRAM
DATA TRANSFER PHASE

DATA TRANSFER
IDLE
F F
1 3 20 20 4 2
Start read End (read) End (V\;rite) Start write
\ transfer transfer endin
pending pending pending P g
F 3
5 | O 23 |24 19
\ 4
Transfer
End read interruption [®— End write
endin
P g 7y
(’ 17
18 22 7 10 17 18 22
1 21
\d
Read file Write file
14
16
10 11 12
(7 13 (7839 J
15

Restarting
pending

JULY 1989 PeSIT VERSION 1 CHAPTER 3 63
FIGURE 5§ : SERVER STATE DIAGRAM
DATA TRANSFER PHASE
DATA TRANSFER
IDLE
& [3
1 3 20 20 4 2
Start read End (read) End (vn;rite) Start write
: transfer transfer ‘
endin . endin
P g pending pending pencing
&
S | 9 23 |24 19
4
Transfer
End read interruption [4——— End write
pending
f ¥
18 22 7 10 17 18 &
1 21
Yy
Read file Write file
14
16
13 789
15

Restarting
pending

JULY 1989 PeSIT VERSION 1 CHAPTER 3 64
CALLER TRANSITIONS SERVER TRANSITIONS
(figure 4) (figure 5)

1 F.READ,D F.READ,

2 F.WRITED F.WRITE,

3 F.READ,C(-Ve) F.READ,R (-Ve)

4 F.WRITE,C(-Ve} FWRITE,R {-Ve)

5 F.READ,C{+Ve) F.READ,R (+Ve)

6 F.WRITE,C (+Ve) F.WRITE,R (+Ve)

7 F.DATAD F.DATA,

8 F.CHECKD F.CHECK)

9 FCHECKC F.CHECK,R

10 F.DATA| F.DATAD

11 F.CHECK. F.CHECK,D

12 F.CHECKR F.CHECK,C

13 F.RESTART,D F.RESTART,I

14 R.RESTART,C F.RESTART,R

15 F.RESTART,|I F.RESTART,D

16 F.RESTARTR F.RESTART,C

17 F.DATAEND,D F.DATA.END,I

18 F.DATA.END,I F.DATAEEND,D

19 F.TRANSFER,END,D F.TRANSFER.END,|
20 F.TRANSFEREND,C F.TRANSFER.END,R
21 F.CANCELD F.CANCEL,D
22 F.CANCEL) F.CANCEL,
23 F.CANCELR F.CANCELR
24 FCANCELC F.CANCELC

JULY 1989 PaSIT VERSION 1 CHAPTER 3 65

TABLE 1 : VALID CALLER SERVICE
PRIMITIVE SEQUENCES

FOLLOWED BY %

o alel 18].1e alel| |4

{HHEERHEEEEEE EEEREE
PRECEDED BY ol ol d]d |]e o] vl e | o
F.CONNECT.D 0]
F.CONNECT,C = * P
FSELECT,0 0
F.SELECT.C(+) . * *
F.SELECT,C{-) * * « |*
F.CREATE,D O
F.CREATE,C(+) . . "
F.CREATE,C(-) .) . |+
F.OPEN,D O
F.OPEN,C(+} * * . *
F.OPEN,C(-) * . >
FWRITE,D Q
F.WRITE,C{+) * |t * * *
F.WRITE,C(-) * * *
F.DATA,D W * . * *
F.DATA.END,D * * »
F.TRANSFEREND,D O
F.TRANSFER.END,C * *
F.READ,D 0O
F.READ,G{+) * * *
F.READ,C(-) * * *
F.DATA,| * « |« .

Key : D request - | indication - R response - C confirmation - * possible - O possible (but

confirmation of the preceeding primitive is awaited).

JULY 1689

PeSIT

VERSION 1

CHAPTER 3

66

FOLLOWED BY

PRECEDED BY

F.CONNECT.D
F.SELECT.D

F.OPEN.D

F.DATA.D
F.DATAEEND.D
F.TRANSFER.END.D

F.WRITE.D

F.CLOSE.D
FDESELECT.D

F.CANCELD

F.CANCELR.

F.CREATED
F.CHECKD

F.RESTART.D

F.CHECKR

F.RESTART.R
F.READ.D

F.RELEASE.D

F.DATA.END,I

»
»

* |F.ABCRT.D

F.CANCELD

O

F.CANCEL.I

F.CANCELR

F.CANCEL.C

F.CLOSED

F.CLOSE, C

F.DESELECT,D

F.DESELECT,C

F.RELEASE,D

F.RELEASE,C

F.ABORT,D

F.ABORT,|

F.CHECK,D

F.CHECK.

F.CHECKR

F.CHECK.C

F.RESTART,D

F.RESTART,!

F.RESTART,R

F.RESTART,C

-4

JULY 1989

PeSIT

VERSION 1

CHAPTER 3

67

TABLE 2 : VALID SERVER SERVICE
PRIMITIVE SEQUENCES

FOLLOWED BY

PRECEDED BY

F.OCONNECTR
F.SELECT.R

F.OPEN.R
FWRIMTER

F.TRANSFER.END R|
F.CLOSER

F.DESELECTR
F.CANCEL.D
F.CANCELR

F.CREATER

F.READ.R

F.DATA.END.D
F.CHECKD

F.DATA.D
F.CHECKR

F.RESTART.D
F.RESTART.R

F.RELEASE,|

* |[F RELEASER
* |F.ABORT.D

F.RELEASE.R

F.ABORT,D

F.ABORT,|

F.CHECK.,D

F.CHECK, |

F.CHECK,R

»| *

F.CHECK.C

F.RESTART,D

F.RESTART,|

F.RESTART,R

F.RESTART,C

1 17O

F.CONNECT.I

F.CONNECT,R

»

F.SELECT.I

F.SELECT,R{+)

F.SELECT,R(-)

F.CREATE|

F.CREATE,R{+)

F.CREATE R {-)

F.OPEN,|

F.OPEN,R(+)

F.OPEN,R(-)

F.WRITE,|

F.WRITE,R(+)

F.WRITE,R(-)

F.DATA.I

F.DATA.END,I

JULY 1989 PeSIT

VERSION 1

CHAPTER 3

68

FOLLOWED BY

PRECEDED BY

F.CONNECT.R
F.SELECTR

F.OPENR

FWRITER

F.TRANSFEREND.R
F.CLOSER

F.DESELECT.R
F.CANCELD
F.CANCELR

F.CREATER

F.READ.R

F.DATA.END.D
F.CHECKD
F.CHECKR

F.DATAD

F.RESTART.D
F.RESTART.R
F.RELEASE.R

F.ABORT.D

F.TRANSFER-END,I

»

»*

F.TRANSFER-END,R

»

F.READ,|

F.READ,R(+)

F.READ,R(-)

F.DATAD

F.DATA-END,D

F.CANCEL,D

F.CANCEL,!

F.CANCELR

F.CANCEL,C

F.CLOSE,|

F.CLOSER

F.DESELECT,I

F.DESELECT,R

JULY 1989 PeSIT

VERSIKON 1

CHAPTER 3 69

3.10.2 Normal sequence for a write transfer

Transfer Transfer
processor A PeSIT PaSIT processor B
CALLER IDLE SERVER
FOONNECTD F.CONNECT,
F.CONNECT,C F.CONNECTR
CONNECIED -
F.CREATE.D F.CREATE I
F.CREATE.C F.CREATER
FILE SELECTED
FOPEND F.OPEN,|
<__FOPENG > FOPENR >
FILE OPENED
FWRITE.D FWRITE
D _» .
<+—EWRAITEG TRANSFER ACTVATED — | 4——0lEn
IDLE
F.DATAD > DATA TRANSFER F.OATAL -
F.DATA.D > F.DATA.| >
FCHECKD F.CHECK | >
FDATAD FDATAL
FDATAD : F.DATA.I :
FCHECKD F.CHECK| >
«__FOHECKC F.CHECKR
FDATAD —TaTAl -
F.CHECKD . F.CHECK| g
FDATA-ENDD F DATA-END |
— —
FTRANSFER-ENDD FTRANSFERENDI
F TRANSFEREND.C F TRANSFER-END.R
< TRANSFER TERMINATED |'®
F.CLOSED F.CLOSEJ
F.CLOSEC F.CLOSER
- FILE CLOSED
F.DESELECTD F.DESELECT
>
F DESELECT, C F.DESELECT, R
< FILE RELEASED -+
F.RELEASE,D F RELEASE,|
F.RELEASE.C R)
-

CONNECTION RELEASED

JULY 1989 PeSIT VERSION 1 CHAPTER 3 70
3.10.3 Normal sequence for a read transfer
Transfer PeSIT PeSIT Transfer
processor A processor B
CALLER CONNECTED STATE SERVER
F.SELECT,D F.SELECT !
»>
F.SELECT,C F.SELECT,R
<% <
F.OPEN,D F.OPEN,I
»> >
F.OPEN,C F.OPEN,R
-4
F.READ,D F.READ,|
»
F.READ,C F.READR
- -
F.DATA,I F.DATA,D
- -+
F.DATA F.DATAD
< -+
F.CHECK| F.CHECK,D
-4 -+
F.DATA, F.DATAD
-+ -4
F.DATA,I F.DATAD
b <
F.CHECK| F.CHECKD
- -
F.DATA-END/ F.DATA-END,D
s -
F.TRANSFER-END,D F.TRANSFER-END,
> >
F.TRANSFER-END,C F.TRANSFER-END,R
- <
F.CLOSED F.CLOSE,|
FCLOSEC F.CLOSE,R
-4
F.DESELECT,D F.DESELECT,
>
F.DESELECT.C F.DESELECT R
< <
CONNECTED STATE

JULY 1989 PsSIT VERSION 1 CHAPTER 3 71

3.10.4 Sequence with interruption of the file transfer

Transfer PeSIT PeSIT Transter
processor A processor B
CALLER FILE OPEN STATE SERVER
F.WRITE,D F.WRITE!
> >
F.WRITE,C F.WRITE,R
- -4
F.DATAD F.DATA,I
» >
F.DATAD > F.DATA |
F.CHECK,D F.CHECK,
> >
. .D . .
F.DATA > F.DATA.I >
F.CANCEL,I F.CANCELD
- -4
F.CANCEL.R F.CANCELC
> >
FILE OPEN STATE
FCLOSED . ,
> F.CLOSE,| >
FCLOSEC F.CLOSE,R
-+ QCLO
F.DESELECT,D F.DESELECT,I
> —
F.DESELECT,C F.DESELECTR
- 4
CONNECTED STATE

JULY 1989 PeSIT VERSION 1 CHAPTER 3 72
3.10.5 Sequence with restarting
Transfer PeSIT PeSIT Transfer
processor A processor B
CALLER FILE OPEN STATE SERVER
F.WRITE,D F.WRITE,
> >
F.WRITE,C F.WRITE,R
- -4
F.DATAD F.DATA,I
> >
F.DATAD F.DATA,I
> >
F.CHECK,D F.CHECK,
> >
F.DATAD F.DATA,I
> >
F.DATAD F.DATA,
> »-
F.DATAD F.DATA,I
> >
F.RESTART,| F.RESTART,D
- -
F.RESTART,R F.RESTART,C
> £ >
F.DATAD F.DATA,|
> >
F.DATAD F.DATA))
> >
F.CHECK,D F.CHECK||
> >
FILE OPEN STATE
F.DATA,D F.DATA,
F.DATA-END,D F.DATA-END,I >
F.TRANSFER-END,D F.TRANSFER-END,|
> —»
F.TRANSFER-END,C F.TRANSFER-END,R
-+ <4
FILE OPEN STATE

{transfer terminated)

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

73

CHAPTER 4

DESCRIPTION OF THE PeSIT PROTOCOL

JULY 1985 PeSIT VERSION 1 CHAPTER 4 74

4.

DESCRIPTION OF THE PeSIT PROTOCOL

4.

1

INTRODUCTION

The PeSIT protocol is conceptualised as an abstract machine in which messages
(FPDU : File transfer Protocol Data Unit) are exchanged between two corresponding
PeSIT units : the caller and the server. These messages contain a protocol specific
header, a variable zone containing some PeSIT protocol management information
(i.e. the parameters) and the file data. The variable zone and the file data may be
absent from certain messages.

The complete description of the protocol is based on the following elements :

- the specification of the message transfer procedures between two PeSIT units,

- the specification and the coding of the protocol data units (FPDU).

These procedures are defined in terms of :

- interactions between corresponding PeSIT units, in terms of FPDUs exchanged,

- interactions between a PeSIT unit and the PeSIT service user on the same system,
in terms of PeSIT service primitive exchanged,

- interactions between a PeSIT unit and the "Communication system" service
provider, in terms of "Communication system" service primitives exchanged.

The description of the protocol being largely identical for PeSIT.F, PeSIT.F',
PeSIT.F" and PeSIT.F", the differences are indicated whenever necessary.

SERVICE AND PROTOCOL CORRESPONDANCE

The PeSIT protocol layer communicates with the user by means of primitives which
were defined in the previous chapter (PeSIT service). The primitives cause or are
the result of FPDU messages exchanged between two corresponding PeSIT units over

a "Communication system” connection.

The following table gives a list of the FPDUs and their corraspondance with the PeSIT
service primitives. The meaning of the abreviations used is :

- Dl : requestindication,

- RC : response/confirmation.

JULY 1989 PeSIT VERSION 1 CHAPTER 4 75
SERVICE PRIMITIVES RELATED FPDU DEFINITION
PeSIT F. CONNECT, DI FPDU.CONNECT Regime establish. request
regime F. CONNECT, RC FPDUACONNECT Regime establish. confirm
establishment| positive
F. CONNECT, RC FPDU. RCONNECT Regime establish. refusal
negative
File selection | F.CREATE, DI FPDU.CREATE File creation
and F.CREATE,RC FDPU.ACK(CREATE) Creation confirm
deselection F.SELECT, DI FPDU.SELECT File selection
F.SELECT, RC FDPU.ACK{SELECT) Selection confirmation
F.DESELECT, DI FPDU.DESELECT File deselection
F.DESELECT, RC FDPU.ACK{DESELECT) Deselection confirmation
F.MESSAGE, Dt FPOUMSG Datagram
FPDUMSGDM Segmented datagram : begin
FPDU.MSGMM Segmented datagram : current
FPDU.MSGFM Segmented datagram : end
F.MESSAGE, RC FPDU.ACK (MSG) Datagram confirmation
File open F.OPEN,DI FPDU.ORF File open
and close F.OPEN, RC FPDU.ACK{ORF) Open confirmation
F.CLOSE,DI FPDU.CRF File close
F.CLOSE,RC FPDU.ACK{CRF) Close confirmation
File transfer | FWRITE,DI FPDUWRITE File write
begin and F.WRITE, RC FPDU.ACK (WRITE) Write confirmation
end F.READ,DI FPDU.READ File read
F.READ, RC FPDU.ACK (READ) Read confirmation
F. TRANSFER.END, DI | FPDU.TRANS.END Transfer end
F.TRANSFER.END,RC | FPDU.ACK(TRANS.END) |Transfer end confirmation
Bulk data F. DATA,DI FPDU.DTF File data
transfer FPDU.DTFDA Segmented data : begin
FPDU.DTFMA Segmented data : current
FPDU.DTFFA Segmented data : end
F.DATA-END, DI FPDU.DTF.END Data end
F.CHECK, DI FDPU.SYN Checkpoint
F.CHECK, RC FDPU.ACK{SYN) Checkpoint confirmation
F.RESTART, DI FPDU. RESYN Restart
F.RESTART, RC FPDU.ACK (RESYN) Restart confirmation
Transfer F.CANCEL, DI FPDU.IDT Transfert interrupt
interruption | F. CANCEL, RC FPDU.ACK (IDT) Interrupt confirmation
Regime F.RELEASE, D} FPDU.RELEASE Regime termination
termination | F. RELEASE,RC FPDU.RELCONF Termination confirmation
F.ABORT, DI FPDUABORT Abrupt termination

JULY 1989 PaSIT VERSION 1 CHAPTER 4 76

4.3 USE OF THE "COMMUNICATION SYSTEM™ SERVICE

This paragraph defines the way in which the "Communication system” service
primitives are used by PeSIT.

PeSIT
protocol layer

"Communication system"
sefvice

"Communication system"
protocol layer

The "Communication system” can be one of four types :

- 1SC Session layer, used with a packet switching network,
- network layer (X25 or an alternative type),

- NETEX layer (when Hyperchannel is used),

- SO session layer used with an 1SO 8802-3 local area network.

JULY 1989

PeSIT VERSION1 CHAPTER 4 77

4.3.1 Use of the Session service by PeSIT.F

The PeSIT.F file transfer protocol uses the 1ISO Session layer directly.
Usually the ISO Session layer is made up of a Kernel functional unit, which
ali implementations should offer, and eleven other functional units which
may or may not be provided by a particular Session entity and whose usage
is negotiated between two Session entities during the connection set-up
phase.

For the PeSIT.F file transfer protocot the following functional units are
required :

- kernel,
- half-duplex transmission {with the associated data token),
- typed data transfer.

The following table details which of the Session services are used.

SERVICE FUNCTION FUNCTIONAL UNIT
S-CONNECT Session connection request Kernel
S-ACCEPT Session connection acceptance Kernel
S-RELEASE End of Session Kernel
S-REFUSE Session connection refusal Kernel
S-U-ABORT User break Kernel
S-P-ABORT Supplier break Kernel
S-DATA Normal data transfer Kernel
S-TOKEN-GIVE |{Data) Token release Half-duplex
S-TYPED-DATA | Typed data transfer Typed data transfer

The PeSIT.F messages (FPDU) are transmitted using either the S-DATA
Session service element, or as user data within the user service elements
used.

The following table shows the Session service elements used to transmit the
PeSIT.F messages (FPDU).

a) Association of a Session connection with a PeSIT.F
connection.

A PeSIT connection is associated with a session connection set up for
this purpose. The session connection is set up via the S-CONNECT
primitive which transports the FPDU.CONNECT in the user data field.
This primitive is always sent by the caller. During this phase the
PeSIT protocol options {use of F.CHECK and F.RESTART) and the
session functional units to be used whithin the session are negotiated.

Connection acceptance is provided by the S-ACCEPT primitive, which
is always sent by the server.

JULY 1989

PeSIT VERSION 1 CHAPTER 4 78

b)

c)

d)

If the connection cannot be set up, the refusal is indicated by the S-
REFUSE primitive. The S-REFUSE primitive does not contain any user
data so the FPDU.RCONNECT is inserted in the cause field which may
contain apart from the cause code, up to 512 bytes of user data.

End of session connection
The session may terminate in one of three ways :

- normal termination which may only be invoked by the caller
{connection limitation). This is provided by the S-RELEASE service.

- abnormal termination invoked by either of the PeSIT.F units. This is
provided by the S-U-ABORT service. The user data field contains the
FPDU.ABORT.

- spontaneous disconnection by the session protocol. This is provided
by the S-P-ABORT service.

Nermal data transmission

Nearly all the PeSIiT.F protocol units (FPDU) are transported by the
S-DATA service.

The dialogue is of the alternate bi-directional type (semi-duplex) the
right to transmit being transfered, in either direction, by the S-
TOKEN-GIVE service.

Checkpointing/restart

When the checkpointing option is chosen, the checkpoints are set by the
emission of an FPDU.SYN, in the user data field of the S-DATA service.
The acknowledgement of the checkpoint is made by the emission of an
FPDU.ACK({SYN]), in the information field of an S-TYPED-DATA service
element.

If the restart option has been upheld, a restart request is made by
sending an FPDU.RESYN, in the user data field of an S-DATA service
element. The confirmation of the restart is made by sending an
FPDU.ACK(RESYN), in the user data field of an S-DATA service
element.

In case the PeSIT unit does not held a data token, the emission of the
FPDU.RESYN is provided by use of the S-TYPED-DATA service element.

Transmission of typed data

The S-TYPED-DATA service is used by PeSIT units who do not hold a
data token to ;

- interrupt the data transfer : emission of an FPDU.IDT (F.CANCEL
service element),

- confirm checkpoints : emission of FPDU.ACK(SYN}),

- request the restart of a transfer : emission of an FPDU.RESYN.

JULY 1989

PeSIT VERSION 1 CHAPTER 4 79

)

Restrictions imposed by the tokens on the use of the
Session service

The rules concerning the use of typed data and the transfer of data
tokens are defined in the preceding table. Collision cases are resolved
by applying the following rules :

1 - the rules of paragraph 4.8.3,

2 - a unit which holds a data token and is waiting for an
FPDU.ACK(IDT} or an FPDU.ACK(RESYN), should release it to
the other unit with whom it is corresponding, by a token
transfer without emission of an FPDU,

The last rule is provided for times when a unit has sent an FPDU.IDT or

an FPDU.RESYN and then receives an FPDU with token, which should be

ignored in application of the priority rules.

The following pictograms illustrate this rule and its use in a certain
number of typical cases.

Conventions :
- ND : normal data
- TD : typed data

- * : token.

JULY 1989 PaSIT VERSION 1 CHAPTER 4 a0
COLLISION TRANSFER.END/IDT
(WRITE) (READ)
CALLER/ SERVER/ SERVER/ CALLER/
SENDER RECEIVER SENDER RECEIVER
* | TRANS.END (DN) DT (DT) * | DTF.END (DN)
IDT (OT)
TOKEN GIVH TRANS.END (DN}
. CK(IDT) (DN) * | TOKEN GIVE
RF (DN) .
ACK(IDT) (PN)
ACK(CRF) (DN) A
COLLISION TRANSFER.END/RESYN
WRITE RE
CALLER/ () SERVER/ CALLER/ (READ) SERVER
SENDER REGCEIVER RECEIVER SENDER

*

}THANS‘END (DN} RESYN (D

TOKEN GIVE

ACK(RESYN) (DN}

DTF (DN)

DTF (DN)

* [TRANSEND (DN) RESYN (DT,

TOKEN GIVE
CK(RESYN} (DN)

A
‘A

JULY 1989

PeSIT VERSION 1

CHAPTER 4

81

COLLISION DTF.END IDT (READ)

SERVER/
SENDER

DTFEND (DN} DT (DT}

TOKEN GV

ACK(IDT) (DN)

ACK(CRF) {DN)

COLLISION RESYN/IDT (READ)

SERVER/
SENDER

* 1 DTF (DN}

RESYN (DN)

OKEN GIVE

ACK(IDT) (D

RF (DN

CALLER/
RECENER

CALLER/
RECEIVER

JULY 1989

PaSIT VERSION 1 CHAPTER 4 82

4.3.2 Use of the Network service by PeSIT.F’

The PeSIT.F' protocol defined in this document relies on a level 3 network
service.

Three different cases may be identified :
- use of a synchronous link in X25 packet mode,
- use of a telephone link in X32 mode,

- use of an asynchronous link {possibly via the PSTN) to access an X25
network via a PAD (Packet Assembler-Disassembler).

4.3.2.1 Use of a synchronous X.25 link
it is presumed that the network connection has been set up
previously and that it is maintained throughout the PeSIT
connection.

All the PeSIT.F' protocol units (FPDU) are transmitted using the
N-DATA service.

The service indications provided by the network layer are
interpreted in the following way :

- N-RESET-IND : emission of an FPDU-ABORT,

- N-DISC : emission of an F-ABORT-INDICATION,

- N-EXPEDITED-DATA : (interrupt packet} ignored by PaSIT.
4.3.2.2 Use of a dial-up X.32 link

The interface provided for a telephone link used in X32 mode is

identical to that provided for a synchronous link used in X25

mode. The reactions of PeSIT.F' are therefore identical to those

described above.

4.3.2.3 Use of an asynchronous link {PAD)

Two specific problems must be resolved when using an
asynchronous Hnk :

- protection against transmission errors on the terminal link,

- non transparent data transmission by the PAD.

JULY 1989

PaSIT

VERSION 1 CHAPTER 4 83

a)

protection against transmission errors on the
terminal link

To forsee the possibility of transmission errors on the
terminal link, an error control mechanism, using a
polynomial calculation {CRC}, may be used in PeSIT.F"

The caller indicates in the FPDU.CONNECT that he will be
using a CRC. All the succeding FPDUs ({including the
FPDU.CONNECT) will then be completed by a 16 bit CRC. The
CRC is calculated on all the bytes of the FPDU including both
the header and the parameters. The two bytes of the CRC are
not included in the length field of the FPDU header.

The CRC calculation algorithm is the same as in the ISO Class
4 Transport protocol.

The receiver of an FPDU should check the validity of the CRC.
If an FPDU with an incorrect CRC is detected, the receiver
replies with either a FPDU.RESYNC (diagnhostic code :
transmission error} during the data transfer phase or an
FPDU.ABORT (diagnostic code 310 : network incident) during
any phase other than the data transfer phase.

In addition to this protection, the use of the "number of data
bytes" (Pl 27) and "number of articles” (Pl 28)
parameters in the FPDU.TRANS.END and
FPDU.ACK(TRANS.END) eliminates the possibility of losing
oneg or more FPDU.DTF.

b) PAD transparency

To eliminate the problem of the PAD being non transparent to
certain control characters the transparent PAD profile is
selected (Transpac profile 14),

This profile may be selected either prior to setting up the
virtual circuit by use of a lecal command from the
asynchronous DTE to the PAD, or after establishment of the
virtual circuit by a transparent profile selection message
sent by the synchronous X25 DTE to the PAD. In either case
the selection of the PAD profile must be made prior to the
FPDU.CONNECT being sent by the caller.

By choosing the Transpac profile 14 the asynchronous DTE
still has to ability to return to command mode by sending a
BREAK signal to the PAD.

JULY 1988

PeSIT VERSION t CHAPTER 4 84

4.3.3 Use of the Netex service by PeSIT.F"

The PeSIT.F" file transfer protocol relies on the session type interface
provided by NETEX.

Within this interface PeSIT.F" uses the fellowing primitives :

PRIMITIVE FUNCTION
OFFER Accept incoming calls
CONNECT Connection request
CONFIRM Accept connection
DISCONNECT Connection break
CLOGE Connection shut down
READ Receive data
WRITE Transmit data

The OFFER primitive is used by a PeSIT.F" unit which is prepared to act as a
server to notify NETEX that it will accept incoming calls.

All the NETEX interface primitives authorise data emission to another
correspondant. The maximum length transmitied at a time is negotiated
during the connection set up phase. It is presumed to be always sufficient to
transport the PeSIT.F' messages (FPDU).

The PeSIT.F" messages (FPDU) are therefore transmitted using either the
WRITE primitive (for emission) and the READ primitive {for reception) or
as user data within other primitives.

JULY 1589

PeSIT

VERSION 1

CHAPTER 4 85

The following table lists the primitives used to transmit the PeSIT.F"

messages (FPDU).

PeSIT.F* MESSAGES TRANSPORTED BY COMMENTS
FPDU.CONNECT CONNECT
FPDU. ACONNECT CONFIRM Provided that the

PeSIT.F"server has sent
an OFFER beforehand

FPDU.RCONNECT DISCONNECT
FPDU.RELEASE CLOSE

FPDU.RELCONF CLOSE

FPDU.ABORT _ DISCONNECT
FPDU.CREATE READ/WRITE
FPDU.ACK{CREATE) READ/WRITE
FPDU.SELECT READ/WRITE
FPDU.ACK(SELECT) READ/WRITE
FPDU.DESELECT READ/WRITE
FPDUL.ACK(DESELECT) READ/WRITE
FPDU.MSG READ/WRITE
FPDU.MSGDM READ/WRITE
FPDU.MSGMM READ/WRITE
FPDU.MSGFM READ/WRITE
FPDUACK(MSGE) READ/WRITE
FPDU.ORF READ/WRITE
FPDU.ACK(CRF) READ/WRITE
FPDU.CRF READ/WRITE
FPDU.ACK (CRF) READ/WRITE
FPDU.READ READ/WRITE
FPDU.ACK(READ) READ/WRITE
FPDU.WRITE READ/WRITE
FPDU.ACK(WRITE) READ/WRITE
FPDU.TRANSFER.END READ/WRITE
FPDU.ACK(TRANSFER.END)| READ/WRITE
FPDU.DTF READ/WRITE
FPDU.DTFDA READ/WRITE
FPDU.DTFMA READ/WRITE
FPDU.DTFFA READ/WRITE
FPDU.DTF.END READ/WRITE
FPDU.SYN READ/WRITE
FPDU.ACK(SYN) READ/WRITE
FPDU.RESYN READ/WRITE
FPDU.ACK(RESYN]) READ/WRITE
FPDU.IDT READ/WRITE
FPDU.ACK{DT READ/WRITE

a) Association
connection.

of a NETEX connection with a PeSIT.F"

A PeSIT connection is associated with a NETEX connection set up for this
purpose. A PeSIT.F" which accepts to act as a server must use the
OFFER primitive to indicate to NETEX that it will accept incoming calls.
The session connection is set up via the CONNECT primitive which
transports the FPDU.CONNECT. This primitive is always sent by the

calier.

Connection acceptance is provided by sending an FPDU.ACONNECT in a

CONFIRM primitive.

JULY 1989

PaSIT VERSION 1 CHAPTER 4 a6

if the connection cannot be set up, the refusal is indicated by an
FPDU.RCONNECT which is sent in a DISCONNECT primitive.

b) End of session connection
The session may terminate in one of three ways :
- normal termination invoked by the caller who sends an FPDU.RELEASE
in a CLOSE primitive. The server replies with an FPDU.RELCONF in a
CLOSE primitive.

- abnormal termination invoked by either of the PeSIT.F" units by
sending an FPDU.ABORT in a DISCONNECT primitive.

- spontaneous disconnection by the NETEX layer. This is provided by a
DISCONNECT primitive returned after a READ.

c) Normal data transmission

All the PeSIT.F" protocol units (FPDU) are sent and received by the
READ and WRITE primitives. The length of data which may be
transmitted by a READ or WRITE is fixed by the two units during the
connection phase.

4.3.4 Use of the Session service on a local area network by PeSIT.F'™

The PeSIT.F™ file transfer protocol allows a local area network which
complies to I1SO 8802.3 (identical to IEEE 802.3) to be used as the
"Communication system",

Since such a local area network does not provide a sufficiently reliable
service, a Class 4 ISO Transport layer must be used above it (this class
allows error detection and restarts upon errors). In order to provide as
close a service as PeSIT.F , it has been decided to use an ISO Session layer
above the Transport layer.

This defines the following architecture for PeSIT.F" :

PeSIT.F™ identical to PeSIT.F

ISO Session

ISO Transport Class
4

IS0 8802.3

Note : a local area network which conforms to 150 8802.3 {or IEEE 802.3)
is very similar to an Ethernet local area network {defined by Intel, Xerox
and DEC). The only difference is in the frame header, the length field in the
ISO 8802.3 standard corresponds with the type field of the Ethernet
definition.

JULY 1989 PeSIT ~ VERSIONA CHAPTER 4 87

4.4 PROTOCOL UNIT (FPDU) SPECIFIC PROCEDURES

This chapter defines the valid sequences of PeSIT protocol elements.

Each FPDU message is described in the following manner :

- contents of the FPDU,

- transmission procedure for the FPDU,

- receiving procedure for the FPDU.

An exchange diagram is provided for each phase.

4.4.1 FPDU.CONNECT
The FPDU.CONNECT is sent by the PeSIT caller in the "Idle” state to set up a
PeSIT connection, over a "Communication system” connection which has

already been set up for the same PeSIT caller.

- Call acceptance

PeSIT PeSIT
“Idle"” state
F.CONNECT,D
- FPDU.CONNECT - F.CONNECT, | -
. T,
- F.CONNECT, C (+ve) - FPDUACONNECT - F.CONNECT, R
"Connected” state
- Call refusal
PeSIT PeSIT
"Idle” state
F.CONNECT, D .
- FPDU.CONNECT - F.CONNECT, | -
F.CONNECT, C (-
- C (-ve) - FPDU.RCONNECT - F.CONNECT, R
"Idle" state

a) Contents of the FPDU.CONNECT

The FPDU.CONNECT contains all the parameters of the F.CONNECT
request primitive, plus :

- ID.SRC : FPDU originator's connection identification allocated by the
calling PeSIT. Any non zero value.

- ID.DST : FPDU receiver's connection identification. Equal to zero in the
FPDU.CONNECT.

JULY 1989

PeSIT VERSION 1 CHAPTER 4 a8

b) Sending the FPDU.CONNECT

An F.CONNECT request primitive entails the allocation of a
"Communication system” connection by PeSIT to the PeSIT connection. To
set up this connection :

- PeSIT.F sends the FPDU.CONNECT as user data in the session
connection request primitive S-CONNECT. PeSIT.F then passss into the
"connection pending” state.

- PeSIT.F' sends an explicit FFDU.CONNECT in the normal data flow by
an N-DATA primitive, after seting up the network connection.
PeSIT.F' then passes into the “connection pending” state.

¢) Receiving an FPDU.CONNECT
The reception of an FPDU.CONNECT validated by PeSIT in the "Idle" state
causes the user defined by the "server identification" parameter of the
FPDU.CONNECT to be notified via an F.CONNECT indication primitive.

The PeSIT server waits for an F.CONNECT response primitive from the
PeSIT service user requested whilst in the "connection pending" state.

4.4.2 FPDU.ACONNECT

A PeSIT unit which receives an FPDU.CONNECT may accept the connection
request by sending an FPDU.ACONNECT in reply to the requesting PeSIT
caller, via the same "Communication system" connection.

a) Contents of the FPDU.ACONNECT

The FPDU.ACONNECT contains alt the parameters of the F.CONNECT
response primitive, plus :

- ID.SRC : FPDU originator's connection identification allocated by the
PeSIT server in the FPDU.ACONNECT. Any non zero value.

- ID.DST : FPDU receiver's connection identification. Equal to the ID.SRC
parameter received in the FPDU.CONNECT.

PeSIT PeSIT
FPDU.CONNECT

ID.SKC ID.DST

XXXX 0000 -- —»>

FPDU.ACONNECT
IDDST ID.SRC

-+ -- 2000 YYYY

JULY 1989 PesSIT VERSION 1 CHAPTER 4 89

b) Sending the FPDU.ACONNECT

The F.CONNECT (positive} response primitive provokes the emission of
an FPDU.ACONNECT in the user data field of an S-ACCEPT session
primitive for PeSIT.F or in the normal data stream.

The connection is now established and the PeSIT server unit attains the
"CONNECTED" state and may receive any of the service requests or
FPDUs autherised by the server procedures.

¢} Receiving an FPDU.ACONNECT

The reception of an FPDU.ACONNECT validated by the calling PeSIT
whilst in the "connection pending" state causes an F.CONNECT
confirmation primitive to be noftified to the calling user. Since the
connection has been successfully established the calling PeSIT unit
attains the "CONNECTED" state and may receive any service requests or
FPDUs authorised by the caller procedure.

4.4.3 FPDU.RCONNECT

The FPDU.RCONNECT is used by the called PeSIT unit to refuse an attempt to
establish a PeSIT connection.

a) Contents of the FPDU.RCONNECT

The FPDU.RCONNECT contains all the parameters of the F.CONNECT
response primitive, plus :

- ID.SRC : FPDU originator's connection identification allocated by the
PeSIT server. Value equals zero since the connection is refused.

- ID.DST : FPDU receiver's connection identification. Equal to the ID.SRC
parameter received in the FPDU.CONNECT.

b) Sending the FPDU.RCONNECT
The F.CONNECT (refusal) response primitive provokes the emission of
an FPDU.RCONNECT in the user data field of an S-REFUSE session
primitive for a PeSIT.F server or in the normal data stream by N-DATA
for a PeSIT.F' server. No PeSIT connection is established.

¢) Receiving an FPDU.RCONNECT
The reception of an FPDU.RCONNECT validated by the calling PeSIT
whilst in the "connection pending” state causes an F.CONNECT (refusal)
confirmation primitive to be notified to the calling user and :
- the PaSIT caller returns to the "Idle” state,

- the PeSIT.F caller requests a network service disconnection (N-
DISCONNECT) and returns to the "Idle" state.

JULY 1989

PeSIT VERSION 1 CHAPTER 4 20

4.4.4

FPDU.CREATE

The FPDU.CREATE is always sent by the PeSIT caller, once in the "connected"
state, when it wishes to create a file upon the corresponding PeSIT server
machine in order 1o carry out a write file transfer. The file is complstely
identified by the "file identifier" parameter.

PeSIT PeSIT
caller server

"Connected” state

F.CREATE, D

FPDU.CREATE F.CREATE, I

F.CREATE, C

i - -
FPDU.ACK(CREATE) - F.CREATE, R

4.4.5

"File selected™ state

a) Contents of the FPDU.CREATE

The FPDU.CREATE contains all the parameters of the F.CREATE
primitive, plus :

ID.DST : FPDU receiver's connection identification.
b) Sending the FPDU.CREATE

An F.CREATE request primitive provokes the emission by the PeSIT unit
of an FPDU.CREATE in the normal data stream of the "communication
system”. The calling PeSIT unit attains the "File creation pending" state.

¢) Receiving an FPDU.CREATE

The reception of an FPDU.CREATE validated by the PeSIT server in the
"connected” state provokes a notification by an F.CREATE indication
primitive to be sent to the server user. The PeSIT unit attains the "file
creation pending” state.

FPDU.ACK{CREATE)

The FPDU.ACK({CREATE} is sent by the PeSIT server whilst in the “file
creation pending” state to indicate the acceptance or refusal of a file creation
for the transfer. The "diagnostic” parameter in the FPDU indicates the exact
reason for a refusal if the file creation was not possible.

a) Contents of the FPDU.ACK(CREATE)

The FPDU.ACK(CREATE} contains all the parameters of the F.CREATE
response primitive, plus :

ID.DST : FPDU receiver's connection identification.

JULY 1989 PeSIT VERSION 1 CHAPTER 4 92
c} Receiving an FPDU.SELECT
The reception of an FPDU.SELECT validated by the PeSIT server in the
"connected” state provokes a notification by an F.SELECT indication
primitive to be sent to the server user. The PeSIT unit attains the "file
selection pending" state.
4.4.7 FPDU.ACK(SELECT)
The FPDU.ACK({SELECT) is sent by the PeSIT server whilst in the "file
creation pending" state to indicate the acceptance or refusal of a file creation
for the transfer. The "diagnostic” parameter in the FPDU indicates the exact
reason for a refusal if the file creation was not possible.
a) Conients of the FPDU.ACK(SELECT)
The FPDU.ACK{SELECT) contains all the parameters of the F.SELECT
response primitive, plus :
ID.DST : FPDU receiver's connection identification.
b) Sending the FPDU.ACK(SELECT)
An F.SELECT response primitive provokes the emission by the PeSIT
server whilst in the "file selection pending" state of an
FPDU.ACK(SELECT) in the normal data stream of the "communication
system". If the "diagnostic® parameter of the F.SELECT responsse
primitive indicates "success”, the PeSIT server attains the "file
selected" state. Otherwise, the PeSIT server returns to the
“CONNECTED" state.
¢) Receiving an FPDU,ACK(SELECT)
The reception of an FPDU.ACK(SELECT) validated by the PeSIT caller in
the "file selection pending” state provokes a notification by an F.SELECT
confirmation primitive to be sent to the caller user. If the "diagnostic”
parameter indicates "success’, the PeSIT caller attains the “file
selected" state, otherwise it returns to the "CONNECTED" state.
4.4.8 FPDU.DESELECT
The FPDU.DESELECT is always sent by the PeSIT caller whilst in the “file
selected" state to request the release of a file which was previously selected
for the transfer.
PeSIT PeSIT
caller server
"File selected” state
F.DESELECT, D - FPDU.DESELECT - F.DESELECT, I
F.DESELECT, C FPDU.ACK(DESELECT) F.DESELECT, R
-y et ~
"Connected" state

JULY 1989

PaSIT VERSION 1 CHAPTER 4 93

4149

a) Contents of the FPDU.DESELECT

The FPDU.DESELECT contains all the parameters of the F.DESELECT
request primitive, plus :

ID.DST : FPDU receiver's connection identification.
b) Sending the FPDU.DESELECT

An F.DESELECT request primitive provokes the emission by the PeSIT
caller whilst in the "file selected" state of an FPDU.DESELECT in the
normal data stream of the "communication system”. The PeSIT unit
attains the "File release pending” state.

¢) Receiving an FPDU.DESELECT

The reception of an FPDU.DESELECT validated by the PeSIT server in the
“file selected” state provokes a notification by an F.DESELECT indication
primitive to be sent to the server user. The PeSIT unit attains the file
release pending" state.

FPDU.ACK(DESELECT)

The FPDU.ACK{DESELECT) is always sent by the PeSIT server whilst in the
"file release pending” state to indicate the result of the execution of the file
release request. The "diagnostic” parameter of the FPDU indicates the exact
reason in case of a failure.

a) Contents of the FPDU.ACK(DESELECT)

The FPDU.ACK(DESELECT) contains all the parameters of the
F.DESELECT response primitive, plus :

ID.DST : FPDU receiver's connection identification.
b) Sending the FPDU.ACK(DESELECT)

An F.DESELECT response primitive provokes the emission by the PeSIT
server whilst in the “file selection pending” state of an
FPDU.ACK(DESELECT) in the normal data stream of the "communication
system”. The PeSIT server returns to the "connected" state.

c¢) Receiving an FPDU.ACK(DESELECT)

The reception of an FPDU.ACK(DESELECT) validated by the PeSIT caller
in the "file release pending” state provokes a notification by an
F.DESELECT confirmation primitive to be sent to the caller user. and the
PeSIT returns to the "connected" state.

JULY 1989

PeSIT VERSICN 1 CHAFPTER 4 94

4.4.10 FPDU.ORF

4.4.11

The FPDU.ORF is always sent by the PeSIT calter whilst in the "file selected”
state to request that the distant file be opened.

a) Contents of the FPDU.ORF

The FPDU.ORF contains all the parameters of the F.ORF resquest
primitive, plus :

ID.DST : FPDU raceiver's connection identification.
b) Sending the FPDU.ORF

An F.OPEN request primitive provokes the emission by the PeSIT caller
whilst in the “file selected” state of an FPDU.ORF in the normal data
stream of the "communication system”. The PeSIT unit attains the "File
open pending” state.

¢) Receiving an FPDU.ORF
The reception of an FPDU.ORF validated by the PeSIT server in the "file
selected” state provokes a notification by an F.OPEN indication primitive
to be sent to the server user. The PeSIT unit attains the “file open
pending” state.

FPDU.ACK(ORF)

The FPDU.ACK(ORF} is always sent by the PeSIT server whilst in the "file

open pending” state to indicate the result of the file open request. The

"diagnostic* parameter of the FPDU indicates the exact reason in case of a

failure.

a) Contents of the FPDU.ACK(ORF)

The FPDU.ACK(ORF) contains all the parameters of the F.OPEN response
primitive, plus :

ID.DST : FPDU receiver's connection identification.

b} Sending the FPDU.ACK(ORF)
An F.OPEN response primitive provokes the emission by the PeSIT
server of an FPDU.ACK{ORF) in the normal data stream of the
"comimunication system”. The PeSIT server attains the state:

- of "data transfer - idle" if the "diagnostic” indicates "success”,

- of *file selected” in all other cases.

JULY 1989 PaSIT

VERSION 1 CHAPTER 4

a5

¢} Receiving an FPDU.ACK(ORF)

The reception of an FPDU.ACK{ORF) validated by the PeSIT caller in the
“file open pending" state provokes a notification by an F.OPEN

confirmation primitive to be sent to the caller user. and the PeSIT
attains the state :

- of "data transfer - idle” if the “diagnostic™ indicates "success”,

- of "file selected” in all other cases.
4.4.12 FPDU.CRF

The FPDU.CRF is always sent by the PeSIT caller whilst in the "data transfer
- idle" state to request file closure.

PeSIT PeSIT
calter server
"Data transfer - idle" state
F.CLOSE, D FPDI].CRF
- 1.C - F.CLOSE, 1 -
F.CLOSE,C FPDU.ACK(CRF) F.CLOSE,R
ol
"File selected” state

a) Contents of the FPDU.CRF

The FPDU.CRF contains all the parameters of the F.CLOSE request
primitive, plus :

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.CRF

An F.CLOSE request primitive provokes the emission by the PeSIT caller
whilst in the "data transfer - idle” state of an FPDU.CRF in the normal

data stream of the "communication system”. The PeSIT unit attains the
"File close pending" state.

¢) Receiving an FPDU.CRF

The raception of an FPDU.CRF validated by the PeSIT server in the "data

transfer - idle" state provokes a noftification by an F.CLOSE indication

primitive to be sent to the server user. The PeSIT unit attains the “file
close pending” state.

JULY 1989

PeSIT VERSION 1 CHAPTER 4 96

4.4.13 FPDU.ACK(CRF)

4.4.14

The FPDU.ACK(CRF} is always sent by the PeSIT server whilst in the “file
close pending" state to indicate the result of the file close request. The
"diagnostic" parameter of the FPDU indicates the exact reason in case of a
failure.

a) Contents of the FPDU.ACK{CRF)

The FPDU.ACK(CRF) contains all the parameters of the F.CLOSE
response primitive, plus :

ID.DST : FPDU receiver's connection identification.
b) Sending the FPDU.ACK(CRF)

An F.CLOSE response primitive provokes the emission by the PeSIT
server of an FPDUACK{CRF) in the normal data stream of the
"communication system”. The PeSIT server returns to the "file selected”
state.

¢) Receiving an FPDU.ACK(CRF)

The reception of an FPDU.ACK(CRF) validated by the PeSIT caller in the
“lile close pending" state provokes a notification by an F.CLOSE
confirmation primitive 1o be sent to the caller user and the PeSIT
returns to the "file selected” state.

FPDU.READ

The FPDU.READ is always sent by the PeSIT caller whilst in the "data
fransfer - idle" state to request the beginning of a read data transfer. It is
during this phase that the recovery point is negotiated for a recovered
transfer.

PeSIT PeSIT
caller server

"Data transfer - idle” state

FREAD,D

FFDU.READ F.READ,]

FREAD,C

FPDU.READ(CRF) F.READ, R
et}

"File read" state

a} Contents of the FPDU.READ

The FPDU.READ contains all the parameters of the F.READ request
primitive, plus :

ID.DST : FPDU receiver's connection identification.

JULY 1989

PaSIT VERSION 1 CHAPTER 4 a7

b) Sending the FPDU.READ

An F.READ request primitive provokes the emission by the PeSIT caller
whilst in the "data transfer - idle" state of an FPDU.READ in the normal
data stream of the "communication system”. The PeSIT unit attains the
"File read pending” state.

c) Receiving an FPDU.READ

The reception of an FPDU.READ validated by the PeSIT server in the
"data transfer - idle” state provokes a nofification by an F.READ
indication primitive to be sent to the server user. The PeSIT unit attains
the "file read pending” state.

4.4.15 FPDU.ACK(READ)

The FPDU.ACK(READ) is always sent by the PeSIT server whilst in the “file
read pending” state to indicate the result of the file read request. The
"diagnostic" parameter of the FPDU indicates the exact reason in case of a
failure.

a) Contents of the FPDU.ACK{READ)

The FPDU.ACK(READ) contains all the parameters of the F.READ
response primitive, plus :

ID.DST : FPDU receiver's connection identification.
b) Sending the FPDU.ACK(READ)

An F.READ response primitive provokes the emission by the PeSIT
server of an FPDU.ACK(READ)} in the normal data siream of the
"communication system”. The PeSIT server attains the "read file" state
if the "diagnostic” code indicates "success", otherwise it returns to the
"data transfer - idle" state.

¢) Receiving an FPDU.ACK{(READ)

The reception of an FPDU.ACK(READ) validated by the PeSIT caller in
the “file read pending" state provokes a notification by an F.READ
confirmation primitive to be sent to the caller user. and the PeSIT
attains the "read file" state if the "diagnostic” code indicates "success”,
otherwise it returns to the "data transfer - idle” state.

JULY 1989 PaSIT VERSION 1 CHAPTER 4 o8

4.4.16¢ FPDU.WRITE

The FPDU.WRITE is always sent by the PeSIT caller whilst in the "data
transter - idle” state to request the beginning of a write data transfer. It is
during this phase that the recovery point is negotiated for a recovered

transfer.
PeSIT PeSIT
caller server
"Data transfer - idle"” state

F.WRITE, D .

- FPDU.WRITE - F.WRITE, 1 -
F.WRITE, C FPDU.ACK(WRITE) F.WRITE, R

ot} —
"File write" state

a) Contents of the FPDU.WRITE

The FPDU.WRITE contains all the parameters of the F.WRITE request
primitive, plus :

ID.DST : FPDU receiver's connection identification.
b) Sending the FPDU.WRITE

An F.WRITE request primitive provokes the emission by the PeSIT
caller whilst in the "data transfer - idle" state of an FPDU.WRITE in the
normal data stream of the "communication system”. The PeSIT unit
attains the "File write pending” state.

¢) Receiving an FPDU.WRITE

The reception of an FPDU.WRITE validated by the PeSIT server in the
"data transfer - idle" state provokes a notification by an F.WRITE
indication primitive to be sent to the server user. The PeSIT unit attains
the "file write pending" state.

4.4.17 FPDU.ACK(WRITE)
The FPDU.ACK(WRITE) is always sent by the PeSIT server whilst in the
"file write pending” state to indicate the result of the file write request. The
"diagnostic” parameter of the FPDU indicates the exact reason in case of a
failure.
a) Contents of the FPDU.ACK(WRITE)

The FPDU.ACK({WRITE) contains all the parameters of the F.WRITE
response primitive, plus :

iD.DST : FPDU receiver's connection identification.

JULY 1989 PaSIT VERSION 1 CHAPTER 4 99

b) Sending the FPDU.ACK(WRITE)

An F.WRITE response primitive provokes the emission by the PeSIT
server of an FPDU ACK(WRITE)} in the normal data stream of the
"communication system”. The PeSIT server attains the "write file" state
if the "diagnostic® code indicates “success”, otherwise it returns to the
‘data transfer - idle" state.

c¢) Receiving an FPDU.ACK(WRITE)

The reception of an FPDU.ACK(WRITE) validated by the PeSIT caller in
the “file write pending" state provokes a notification by an F.WRITE
confirmation primitive to be sent to the caller user and the PeSIT
attains the "write file" state if the "diagnostic” code indicates "success”,
otherwise it returns to the "data transfer - idle" state.

4.4.18 FPDU.TRANS.END

The FPDU.TRANS.END is always sent by the PeSIT caller whilst in the "end of
read” or "end of write" state 1o request the end of z file data transfer.

PeSIT PcSIT
caller server
"End of write” or "End of
read" state
F.TRANSFER.END, D FPDU, TRANS.END F.TRANSFER END, I
o - o
F.TRANSFER END, C FPDU.ACK(TRANS.END) F.TRANSFER.END, R
] ol -l
"Data transfer - idle" state

a) Contents of the FPDU.TRANS.END

The FPDU.TRANS.END contains all the parameters of the F.TRANS.END
request primitive, plus :

iD.DST : FPDU receiver's connection identification.
b) Sending the FPDU.TRANS.END

An F.TRANSFER.END request primitive provokes the emission by the
PeSIT caller whilst in the "end of read”" or "end of write" state of an
FPDU.TRANS.END in the normal data stream of the "communication
system”. The PeSIT unit attains the "end of write transfer pending” or
"end of read transfer pending" state.

¢) Receiving an FPDU.TRANS.END

The reception of an FPDU.TRANS.END validated by the PeSIT server in
the "end of read” or "end of write" state provokes a notification by an
F. TRANSFER.END indication primitive to be sent to the server user. The
PeSIT unit attains the "end of write transfer pending” or "end of read
transfer pending"state.

JULY 1989 PeSIT VERSION 1 CHAPTER 4 100

4.4.19 FPDU.ACK(TRANS.END)

The FPDU.ACK(TRANS.END) is always sent by the PeSIT server whilst in the
"end of write transfer pending” or "end of read transfer pending" state to
indicate the result of the end of file transfer request. The "diagnostic”
parameter of the FPDU indicates the exact reason in case of a failure.

a) Contents of the FPDU.ACK(TRANS.END)

The FPDU.ACK(TRANS.END} contains all the parameters of the
F.TRANSFER.END response primitive, plus :

ID.DST : FPDU receiver's connection identification,
b) Sending the FPDU.ACK(TRANS.END)

An F.TRANSFER.END response primitive provokes the emission by the
PeSIT server of an FPDU.ACK{TRANS.END) in the normal data stream of
the "communication system". The PeSIT server returns to the “data
transfer - idle" state .

¢) Receiving an FPDU.ACK(TRANS.END)
The reception of an FPDU.ACK(TRANS.END) validated by the PeSIT caller
in the "end of write tfransfer pending" or "end of read transfer pending”
state provokes a notification by an F.TRANSFER.END confirmation
primitive to be sent to the caller user and the PeSIT returns to the “data
transfer - idle" state.

4.4.20 FPDU.DTF, FPDU.DTFDA, FPDU.DTFMA, FPDU.DTFFA

The FPDU.DTF, FPDU.DTF.DA, FPDU.DTF.MA, FPDU.DTF.FA are sent by the

PeSIT sender whilst in the "write file® or "read file" state to transfer the

file data.

4.4.20.1 FPDU.DTF single article

The FPDU.DTF transport one and only one article from the file.

PeSIT PeSIT
sender receiver
"Read file" or " Write file"
state
FDATA,D FPDU.DTF F.DATA,I
v -

a) Contents of the FPDU.DTF

The FPDU.DTF contains all the parameters of the F.DATA
request primitive (file article}, plus :

ID.DST : FPDU receiver's connection identification.

JULY 1989 PeSIT VERSION 1 CHAPTER 4 101
b) Sending the FPDU.DTF
An F.DATA request primitive provokes the emission by the
PeSIT sender whilst in the "read file" or "write file" state of
an FPDU.DTF in the normal data stream of the
"communication system". The PeSIT unit remains in the same
state.
Receiving an FPDU.DTF
The reception of an FPDU.DTF validated by the PeSIT receiver
in the "read file" or "write filg" state provokes a notification
by an F.DATA indication primitive to be sent to the receiver
user. The PeSIT unit remains in the same state.
4.4.20.2 FPDU.DTF multi article
The FPDU.DTF transports several articles from the file.
PeSIT PeSIT
sender receiver
"Read file" or " Write file"
state
E.DATA,D -
F.DATA, D FPDU.DTF . EDATA, I

a) Contents of the FPDU.DTF multi article

The FPDU.DTF multi article contains all the parameters of
several F.DATA request primitives (several file articles),
plus :

ID.DST : FPDU receiver's connection identification.
Sending the FPDU.DTF multi article

An F.DATA request primitive provokes the concatenation of
the article in the FPDU.DTF by the PeSIT sender whilst in the
"read file” or "write file" state, and may provoke the
emission of the FPDU.DTF in the normal data stream of the
“communication system". The number of articles and the
criteria which determine when the FPDU is sent are left up
to the choice of the protocol designer. The PeSIT unit remaing
in the same state.

Receiving an FPDU.DTF multi article

The reception of an FPDU.DTF validated by the PeSIT receiver
in the "read file" or "write file" state provokes a notification
by an F.DATA indication primitive to be sent to the receiver
user. The PeSIT unit remains in the same state.

JULY 1989

PaSIT

VERSION 1 CHAPTER 4 102

4.4.20.3 Segmentation of articles

Once the size of the article to be transported is greater than the
maximum size supported by an FPDU ("maximum size of a data
element” less the FPDU header size), the arlicle can be
segmented and transported in several FPDUs :

- an FPDU.DTF.DA {beginning of the article),

- zero or more FPDU.DTF.MA (middle of an article),

- an FPDU.DTF.FA (end of article),

PeSIT PeSIT
sender receiver
"Read file" or " Write file"
state
FDATA,D FPDU DTF.DA -
FPDU.DTF.MA
-
. from 0 to n FPDU.DTF.MA
FPDU.DTF.MA
-
FPDU.DTE.FA - F.DATA,1 -

a) Contents of the FPDU.DTF.DA, FPDU.DTF.MA,
FPDU.DTF.FA

The FPDU.DTF.DA, FPDU.DTF.MA, FPDU.DTF.FA each

contain a fraction of the contents of the F.DATA request
primitive, plus :

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.FPDU.DTF.DA, FPDU.DTF.MA,
FPDU.DTF.FA

An F.DATA request primitive provokes the emission by the
PeSIT sender whilst in the "read file" or "write file" state
of an FPDU.DTF.DA, a zero or greater number of
FPDU.DTF.MA, and an FPDU.DTF.FA in the normal data

stream of the "communication system". The PeSIT unit
remains in the same state.

¢) Receiving an FPDU.DTF.FA

The reception of an FPDU.DTF validated by the PeSIT
receiver in the "read file" or "write file" state provokes a
notification by an F.DATA indication primitive to be sent to
the receiver user. The PeSIT unit remains in the same state.

JULY 1989

PeSIT VERSION 1 CHAPTER 4 103

4.4.21 FPDU.DTF.END

The FPDU.DTF.END is always sent by the PeSIT sender whilst in the "write
file" or "read file" state to indicate the end of file data transfer. The
"diagnostic" parameter of the FPDU indicates the exact reason for the end
of transfer.

PeSIT PeSIT

sender receiver

"Write file” or "Read file"
state
FPDU.DTF .
F.DATA,D - - F.DATA, I
EDATAEND, D FPDU.DTF.END E.DATAEND, I
-

a)

b}

"End of read" or "End of
write" state

Contents of the FPDU.DTF.END

The FPDU.DTF.END contains all the parameters of the F.DATA.END
request primitive, plus :

ID.DST : FPDU receiver's connection identification.
Sending the FPDU.DTF.END

An F.DATA.END request primitive provokes the emission by the PeSIT
sender whilst in the "read file" or "write file" state of an
FPDU.DTF.END in the normal data stream of the "communication
system". The PeSIT unit attains the "end of read” or "end of write"
state.

Receiving an FPDU.DTF.END

The reception of an FPDU.DTF.END validated by the PeSIT receiver in
the "read file" or "write file" state provokes a notification by an
F.DATA.END indication primitive to be sent to the receiver user. The
PeSIT unit attains the "end of read" or "end of write" state.

JULY 1989

Pea3IT VERSION1 CHAPTER 4 104

4.4.22 FPDU.SYN

The FPDU.SYN is always sent by the PeSIT sender whilst in the "write file”
or "read file" state to request the setting of checkpoints.

PeSIT PeSIT
sender receiver
"Write file" or "Read file"
state

F.DATA,D FPDU.DTF F.DATA, I

- -
F.CHECK,D FPDU.SYN F.CHECK,1

-1 ' et

a)

b)

c)

d)

Contents of the FPDU.SYN

The FPDU.SYN contains all the parameters of the F.CHECK request
primitive, plus :

ID.DST : FPDU receiver's connection identification.
Sending the FPDU.SYN

An F.CHECK request primitive provokes the emission by the PeSIT
sender of an FPDU.SYN in the normal data stream of the
"communication system”. The PeSIT unit remains in the same state.

Receiving an FPDU.SYN

The reception of an FPDU.SYN validated by the PeSIT receiver in the
"read file" or "write file" state provokes a notification by an F.CHECK

indication primitive to be sent to the receiver user. The PeSIT unit
remains in the same state.

Note

The FPDU.SYN should be sent between articles from the file. This
implies that if article segmentation is used then the FPDU.SYN should
only be placed after an FPDU.DTF.FA and prior to an FPDU.DTF.DA.

JULY 1989 PaSIT VERSION 1 CHAFTER 4 105

4.4.23 FPDU.ACK(SYN)

The FPDU.ACK.SYN is always sent by the PeSIT receiver whilst in the
"write file" or “"read file" state to acknowledge the checkpoints set

previously.
PeSIT PeSIT
sender receiver
"Write file” or "Read file"
state
FPDU.DTF
F.DATA,D - DU - F.DATA,1 -
F.CHECK,D FPDU.SYN F.CHECK, I
- - -
F.CHECK, C FPDU.ACK(SYN) F.CHECK, R
Ll ot}

a) Contents of the FPDU.ACK(SYN)

The FPDU.ACK(SYN) contains all the parameters of the F.CHECK
response primitive, plus :

ID.DST : FPDU receiver's connection identification.
b) Sending the FPDU.ACK(SYN)

An F.CHECK response primitive provokes the emission by the PeSIT
receiver of an FPDU.ACK(SYN) in the normal data stream of the
"communication system”. The PeSIT unit remains in the same state. For
PeSIT.F, the FPDU.ACK(SYN) is sent in the typed data stream of the
session layer (S-TYPED-DATA).

¢) Receiving an FPDU.ACK(SYN)

The reception of an FPDU.SYN validated by the PeSIT sender in the
"read file" or "write file" state provokes a notification by an F.CHECK
confirmation primitive to be sent to the sender user. The PeSIT unit
remains in the same state,

JULY 1989

PeSIT VERSION 1 CHAPTER 4 108

4.4.24 FPDU.RESYN

The FPDU.RESYN is sent by the PeSIT sender or receiver whilst in the
"write file" or "read file" state to request that a transfer be restarted from
a previously set checkpoint.

PeSIT PeSIT
"Write file" or "Read file"
state
F.RESTART, D FPDU.RESYN - F.RESTART, I
F.RESTART, C - FPDU.ACK(RESYN) FRESTART,R
e
"End of read" or "End of
write" state

a) Contents of the FPDU.RESYN
The FPDU.RESYN contains all the parameters of the F.RESTART request
primitive, plus :
ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.RESYN
An F.RESTART response primitive provokes the emission by the PeSIT
sender or receiver of an FPDU.RESYN in the normal data stream of the
"communication system”. The PeSIT unit attains the "restart pending”
state.

¢) Receiving an FPDU.RESYN
The reception of an FPDU.RESYN validated by the PeSIT sender or
receiver in the "read file" or "write file" state provokes a notification
by an F.RESTART indication primitive to be sent to the user. The PeSIT
unit attains the "restart pending" state.

4.4.25 FPDU.ACK(RESYN)

The FPDU.ACK.RESYN is sent by the PeSIT sender or receiver whilst in the
"restart pending" state to acknowledge the restart.

a)

b)

Contents of the FPDU.ACK(RESYN)

The FPDU.ACK{RESYN]} contains all the parameters of the F.RESTART
request primitive, plus :

ID.DST : FPDU receiver's connection identification.
Sending the FPDU.ACK(RESYN)
An F.RESTART response primitive provokes the emission by PeSIT of

an FPDU.ACK(RESYN) in the normal data stream of the "communication
system”. The PeSIT unit returns to the "read file" or "write file" state.

JULY 1989 Pe3IT VERSION 1 CHAPTER 4 107

¢) Receiving an FPDU.ACK{RESYN)

The reception of an FPDU.ACK(RESYN) validated by PeSIT in the
“restart pending" state provokes a notification by an F.RESTART
confirmation primitive to be sent to the user. The PeSIT unit returns
to the "read file" or "write file" state.

4.4.26 FPDU.RELEASE

In the same way as the FPDU.CONNECT, the FPDU.RELEASE is always sent
by the PeSIT caller whilst in the "connected" state to request connection

shut-down.
PeSIT PeSIT
caller receiver

"Connected"” state

FRELEASE, D - FPDU.RELEASE - F.RELEASE,I
FRELEASE, C FPDU.RELCONF F.RELEASE,R
gl]
"Idle" state

a) Contents of the FPDU.RELEASE

The FPDU.RELEASE contains all the parameters of the F.RELEASE
request primitive, plus :

ID.DST : FPDU receiver's cennection identification.
ID.SRC : FPDU sender's connection identification.
b} Sending the FPDU.RELEASE

An F.RELEASE request primitive provokes the emission by the PeSIT
caller of an FPDU.RELEASE in :

- the user field of the session end request primitive S-RELEASE, by
PeSIT.F,

- the normal data stream of the N-DATA network service by PeSIT.F.
The PeSIT unit attains the “liberation pending” state.

¢) Receiving an FPDU.RELEASE
The reception of an FPDU.RELEASE validated by PeSIT in the
"connected" state provokes a notification by an F.RELEASE indication

primitive 1o be sent to the user. The PeSIT unit attains the "liberation
pending" state.

JULY 1989

PeSIT YERSION 1 CHAPTER 4 108

4.4.27 FPDU.RELCONF

The FPDU.RELCONF is always sent by the PeSIT server whilst in the
“liberation pending” state to acknowledge release of the connection.

a) Contents of the FPDU.RELCONF

The FPDU.RELCONF contains all the parameters of the F.RELEASE
request primitive, plus :

ID.D3T : FPDU receiver's connection identification.
ID.SRC : FPDU sender's connection identification.
b) Sending the FPDU.RELCONF

An F.RELEASE request primitive provokes the emission by the PeSIT
server of an FPDU.RELCONF in :

- the user field of the session end response primitive S-RELEASE by
PeSIT.F,

- the normal data stream of the N-DATA network service by PeSIT.F’
and the arming of the protocol monitoring time-out Tr (See 4.5.2).

The PeSIT unit returns to the “idle" state.
c) Receiving an FPDU.RELCONF

The reception of an FPDU.RELCONF validated by the PeSIT caller in the
"liberation pending” state provokes a notification by an F.RELEASE
indication primitive to be sent to the calling user. The PeSIT unit
returns to the "idle" state as well as requesting network service shut-
down with the N-DISCONNECT primitive by PeSIT.F,

4.4.28 FPDU.ABORT

The FPDU.ABORT may be sent by a PeSIT caller or server at any time
during the dialogue to indicate the abrupt termination of a connection. The
"diagnostic" parameter provides the reason for terminating.

- Abrupt termination requested by the user (caller/server).

PeSIT PeSIT

Any state

F.ABORT, D

FPDU.ABORT - F.ABORT, I

JULY 1989 PeSIT VERSION 1 CHAPTER 4 109
- Abrupt termination requested by PeSIT or the "communication system”.
PeSIT PeSIT
Any state
F.ABORT,] FPDU ABORT - F.ABORT, I

a) Contents of the FPDU.ABORT

The FPDU.ABORT contains all the parameters of the F.ABORT primitive,
plus :

ID.DST : FPDU receiver's connection identification.

ID.SRC : FPDU sender's connection identification.

b) Sending the FPDU.ABORT

- The reception by PeSIT of an F.ABORT request primitive,
- or PeSIT detecting a class 3 error {(see Annexe D),

- or an N-RESET indication being received by PeSIT.F' from the
network f[ayer,

provoke the emission by PeSIT of an FPDU.ABORT in :

- the user field of the session service primitive S-ABORT by PeSIT.F
and a return to the "idle" state,

- the normal data stream of the N-DATA network service by PeSIT.F',
followed by arming of the protocol monitoring time-out Tr (See
4.6).

The PeSIT user is systematicaly notified by an F.ABORT indication
primitive.

¢) Receiving an FPDU.ABORT

The reception of an FPDU.ABORT by PeSIT causes the user to be notified
by an F.ABORT indication primitive and :

- for PeSIT to return o the "idle” state,

- and network service shut-down to be requested with the N-
DISCONNECT primitive by PeSIT.F.

JULY 1889

PeSIT VERSION 1 CHAPTER 4 110

4.4.29

FPDU.IDT

The FPDU.IDT is sent by the PeSIT caller or server whilst in the "write
file" or "read file" state to request the interruption of a transfer. The end
of transfer code indicates why the transfer was interrupted :

"cancelled”, "suspended” or "error".

PeSIT PeSIT

"Read or write file" state

F.CANCEL,D

FPDU.IDT F.CANCEL, I

F.CANCEL, C

FPDU.ACK(IDT) F.CANCEL,R

4.4.30

"Data transfer - idle" state

a) Contents of the FPDU.IDT

The FPDU.IDT contains all the parameters of the F.CANCEL primitive,
plus :

ID.DST : FPDU receiver's connection identification.
b) Sending the FPDU.IDT

An F.CANCEL request primitive provokes the emission by the PeSIT
sender or receiver of an FPDU.IDT to request interruption of the
current transfer. The PeSIT unit attains the "transfer interruption
pending” state.

Typed data is used by the PeSIT.F session service.
c¢) Receiving an FPDU.IDT
The reception of an FPDULIDT validated by PeSIT in the "read file" or
"write file” state provokes a notification by an F.CANCEL indication
primitive to be sent to the user. The PeSIT unit attains the "transfer
interruption pending” state.
FPDU.ACK(IDT)
The FPDU.ACK{IDT} is sent by the PeSIT sender or receiver whilst in the
"transfer interruption pending” state to acknowledge the transfer
interrupt request.

a) Contents of the FPDU.ACK(IDT)

The FPDU.ACK(IDT} contains afl the parameters of the F.CANCEL
response primitive, plus :

ID.DST : FPDU receivers connection identification.

JULY 1989 PeSIT VERSION 1 CHAPTER 4 111

b) Sending the FPDU.ACK(IDT)

An F.CANCEL response primitive provokes the emission by PeSIT of an
FPDU.ACK{IDT). The PeSIT unit returns to the "data transfer - idle"
state.

Typed data is used by the PeSIT.F session service.
c¢) Receiving an FPDU.ACK({IDT)

The reception of an FPDU.ACK(IDT) validated by PeSIT in the "transfer
interrupt pending” state provokes a notification by an F.CANCEL
indication primitive to be sent to the user. The PeSIT unit returns to
the "data transfer - idle" state.

4.4.31 FPDU.MSG, FPDU.MSGDM, FPDU.MSGMM, FPDU.MSGFM

The FPDU.MSG is always sent by the PeSIT caller whilst in the "connected”
state to request transmission of a datagram to another PeSIT server unit
without entering the file transfer mode.

PeSIT PeSIT
caller server

"Connected” state

FMESSAGE, D - FPDUMSG F.MESSAGE, |

FMESSAGE, C - FPDU.ACK(MSG) FMESSAGE, R

-

"Connected" state
4.4.31.1 FPDU.MSG

a) Contents of the FPDU.MSG

The FPDU.MSG contains all the parameters of the
F.MESSAGE request primitive, plus :

ID.DST : FPDU receivers connection identification.
b) Sending the FPDU.MSG

An F.MESSAGE request primitive provokes the emission by
the PeSIT caller of an FPDU.MSG in the normal data
stream of the "communication system". The PeSIT calling
unit attains the “file release pending” state.

¢) Receiving an FPDU.MSG

The reception of an FPDU.MSG validated by the PeSIT
server in the "connected” state provokes a notification by
an F.MESSAGE indication primitive to be sent to the user.
The PeSIT unit attains the "file release pending” state.

JULY 1989

PaSIT

VERSION 1 CHAPTER 4 112

4.4.31.2 Segmentation of Datagrams

Once the size of the message to be transported is greater than
the maximum size supported by an FPDU {("maximum size of a
data element” less the FPDU header size), the message can be
segmented and transported in several FPDUs :

- an FPDU.MSGDM (beginning of the message),

- zero or more FPDU.MSGMM {middle of an message},

- an FPDU.MSGFM (end of message).

PeSIT PeSIT
sender receiver
"Read file” or " Write file"
state
FMESSAGE, D FPDUMSGDM -
FPDU MSGMM
-
. from 0 to n FPDUMSGMM
FPDU MSGMM
-
FPDU MSGFM - F.MESSAGE, I -

a) Contents of the FPDU.MSGDM, FPDU.MSGMM,
FPDU.MSGFM

The FPDU.MSGDM, FPDU.MSGMM, FPDU.MSGFM each
contain a fraction of the contents of the F.MESSAGE
request primitive, plus :

ID.DST : FPDU receiver's connection identification.

b} Sending the FPDU.FPDU.MSGDM, FPDU.MSGMM,
FPDU.MSGFM

An F.MESSAGE request primitive provokes the emission
by the PeSIT caller whilst in the "connected" state of an
FPDU.MSGDM, a zero or greater number of
FPDU.MSGMM, and an FPDU.MSGFM in the normal data
stream of the "communication system”. The PeSIT unit
remains in the same state.

¢) Receiving an FPDU.MSGFM

The reception of an FPDU.MSGFM validated by the PeSIT
server in the "connected” state provokes a notification by
an F.MESSAGE indication primitive to be sent 1o the
server user. The PeSIT unit attains the “file release
pending" state.

JULY 1989

PeS3IT VERSION 1 CHAPTER 4 113

4.4.32 FPDU.ACK(MSG)

The FPDU.ACK(MSG) is always sent by the PeSIT server whilst in the "“file
release pending” state to indicate the outcome of execution of the message
delivery request. The "diagnostic” parameter of the FPDU indicates the
exact reason in case of a failure. The FPDU.ACK(MSG) may itself contain a
message 1o be returned to the PeSIT calling station.

a)

b)

c)

Contents of the FPDU.ACK{MSG)

The FPDU.ACK(MSG) contains all the parameters of the F.MESSAGE
response primitive, plus :

ID.DST : FPDU receiver's connection identification.
Sending the FPDU.ACK(MSG)

An F.MESSAGE response primitive provokes the emission by PeSIT of
an FPDU.ACK{MSG) in the normal data stream of the "communication
system”. The PeSIT server unit returns to the "connected” state.

Receiving an FPDU.ACK(MSG)

The reception of an FPDU.ACK(MSG) validated by the PgSIT caller in
the "connected" state provokes a notification by an F.MESSAGE
confirmation primitive to be sent to the calling user. The PeSIT calling
unit returns to the "connected" state.

JULY 1989

PeSIT VERSION1 CHAPTER 4 114

4.5 CONCATENATION OF FPDUS

Some FPDUs may be concatenated into the basic data unit of the lower protocol layer
{NSDU, SSDU, ...), whithin the maximum size limit negotiated during the creation
or selection phase of the file.

This rule may be applied to the following FPDUs :

- FPDU.DTF

- FPDU.DTF.DA

- FPDU.DTF.MA

- FPDU.DTF.FA

- FPDU.DTF.END

- FPDU.SYN

4.6 PESIT PROTOCOL TIME-QUTS

To monitor the PeSIT protocol several time-outs exist.

1) Protocol monitoring time-out : Tp

One of the partners stops sending messages while the other is awaiting
something. This anomaly can be detected localy by a time-out function calied
"protocol monitoring time-cut" : Tp. The only solution in this case is to
terminate the connection with a diagnostic code which indicates that the
monitoring time-out has expired.

For the server, the protocol monitoring time-out Tp, is used to monitor the
activity of the oppposit PeSIT unit :

- waiting for an FPDU in the following list : ORF, READ, WRITE, DTF, DTF.DA,
DTF.MA, DTF.FA, DTF.END, SYN, RESYN, TRANS.END, CRF or DESELECT.

For the cailer, the protocol monitoring time-out Tp is used to monitor the
replies of the opposit PeSIT unit to the above FPDUs, as well as the reply to an
FPDU CONNECT or RELCONF.

The length of this time-out as intended by the caller may be transmitted to the
server in the FPDU CONNECT (optional parameter with default value of 30
seconds).

2) Network disconnect time-out : Tr {used by PeSIT.F)

* Normal disconnect case

The PeSIT.F' server arms the timer Tr and awaits the network server
disconnect indication primitive "N-DISCONNECT,I". If the network service
disconnect indication primitive is received then the timer Tr is disabled and
the PeSIT server returns to the “idle” state. If the timer Tr expires prior to
reception of this disconnect indication, the PeSIT server requests network
service disconnection using the N-DISCONNECT request primitive and
returns to the "idle" state.

JULY 1989

PeSIT VERSION 1 CHAPTER 4 115

* F.ABORT service usage

If the F.ABORT service is invoked, the PeSIT unit which sent the FPDU.ABORT
arms the timer Tr and awaits the network server disconnect indication
primitive "N-DISCONNECT,I". If the timer Tr expires prior to reception of
this disconnect indication, the PeSIT unit which sent the FPDU.ABORT
requests network service disconnection using the N-DISCONNECT request
primitive and returns to the "idle" state. If the network service disconnect
indication primitive is received then the timer Tr is disabled and the PeSIT
unit returns to the “idle” state.

The time-out delay of the timer Tr (Network disconnect time-out) is related
to the service quality and depends on the local system implementation.

This timer should have a value of approximately 30 seconds.

3) FPDU-CREATE, SELECT or RELEASE (request) time-out : Td

This timer is used to allow 2 network connection to be used for several
iransfers. Between two transfers, some time may go by without the connection
being released.

This timer should have a value of several minutes (greater than 5 minutes).

This timer is armed only by the server.

4) Connection set-up time-out : Tc¢

The timer Tc is armed by the server whilst a PeSIT.F’ network connection has
been set-up to monitor the emission of an FPDU.CONNECT by the caller.

This timer should have a value of approximately 30 seconds.

£

JULY 1989

PeSIT VERSION 1 CHAPTER 4 1186

4.7 STRUCTURE AND CODING OF PESIT PROTOCOL UNITS (FPDU)

4.7.1 Structure of a protocol element

Note : in this paragraph, the word message is used as "protocol data unit".
Each PeSIT message is made up of two parts :
- a six byte message header,

- a variable length message body.

byte 1 2 345 6 7 n
fixed part variable part
g o -
message header message body

a) message header
The message header has the following structure :

Bytes 1 and 2
Total length of the message (header + body, in bytes).

Byte 3

Phase indicator :

40h : protocol element for the connection phase

00h : FPDU.DTF, FPDU.DTF.DA, FPDU.DTF.MA, FPDU.DTF.FA
COh : other FPDUs

Byte 4
message type

Byte 5
Receiver's connection identification

Byte 6
- FPDU used during the connection phase : Sender's connection
identification {ID.SRC)

- FPDU.DTF single article : 0
- FPDU.DTF multi article : number of articles N (N>1)
- Other FPDUs : 0

In the following table, X denotes the callers connection identification and
Y denotes the server connection identification. X and Y are arbitrary non-
zero numerical values, determined at connection time by the caller and
the server.

The coding Y/X indicates that the value to be used is Y if the FPDU is sent
by the PeSIT caller or X if the FPDU is sent by the PeSIT server.

JULY 1989 PeSIT VERSION 1 CHAPTER 4 117

PHASE MESSAGE Byte 3 |Byte 4|Byte 5 Byte 6
Connection FPDU.CONNECT 40h 20 |0 X
FPDUACONNECT 40h 21 |X Y
FPDU.RCONNECT 40h 22 (X 0
FPDU.RELEASE 40h 23 |Y X
FPDU.RELCONF 40h 24 X Y
FPDUABORT 40h 25 |yiX ()| Xyy
File selection FPDU.CREATE Coh 11 |X 0
and release FPDU.ACK(CREATE) Coh 30 |X 0
FPDU.SELECT Coh 12 |Y 0
FPDU.ACK(SELECT) Coh 31 |X 0
FPDU.DESELECT CoOh 13 |Y 0
FPDU.MSG Coh 16 |Y 0
FPDU.MSGDM Coh 17 |Y 0
FPDU.MSGMM Coh 18 |Y 0
FPDU.MSGFM Coh 19 |Y 0
FPDU.ACK(MSG) Coh 3B |X 0
File opening FPDU.ORF Coh 14 |Y 0
and closing FPDU.ACK(ORF) Coh 33 |X 0
FPDU.CRF Coh 15 |Y 0
FPDU.ACK(CRF) Coh 34 |X 0
Beginning and FPDU.READ Coh 01 |Y 0
end of transfer FPDU.ACK(READ}) CoOh 35 |X 0
FPDU.WRITE CoOh 02 |Y 0
FPDU.ACK({(WRITE) COh 36 |X 0
FPDU.TRANS.END Coh 08 |Y 0
FPDU.ACK(TRANS.END) COh 37 |X 0
Cata transfer FPDU.DTF 0 00 |Y/X 0 (single-article)
N (multi-articles)
FPDU.DTFDA 0 41 YiX 0
FPDU.DTFMA 0 40 |Y/X 0
FPDU.DTFFA 0 42 |Y/X 0
FPDU.DTF.END COh 04 |YiX 0
FPDU.SYN Coeh 03 |Y/X 0
FPDU.ACK(SYN) Coh 38 |Y/X 0
FPDU.RESYN Coh 05 |Y/IX 0
FPDU.ACK(RESYN} Coh 39 |Y/X 0
Transfer FPDU.IDT CGh 06 [Y/X 0
interruption FPDU.ACK{IDT) Coh 3A {Y/X 0

(1) If an FPDU.ABORT is sent before the |D.DST is known, then the ID.DST field should be set to 0.

JULY 1989 PaSIT VERSION 1 CHAPTER 4 118

b) message body
. FPDU.DTF, FPDU.DTF.DA, FPDU.DTF.MA, FPDU.DTF.FA
For these FPDUs, this field contains the file data.

- In a single article FPDU.DTF (such as in the SIT), this field contains
one complete article :

header (8 bytes) article

- In a multi-article FPDU.DTF, this field contains several articles :

header (6 byles) L article 1 article 2
H‘
| B
articlal aficle 2
length length
(2 bytes)

- An article which is longer than the maximum size of the SSDU-DATA is
segmented into several FPDU comprised of :
an FPDU.DTF.DA (stant of article), zero or more FPDU.DTF.MA (middle
article) and an FPDU.DTF.FA (end of article) :

header start of article header middle of article
FPDU.DTF.DA FPDU.DTF.MA
_____ header middle of article header end of anticle
FPDU.DTF.MA FPOU.DTF.FA
.OTHER FPDUs

This field contains the message parameters, each identified by a Pl
{parameter identifier) which are assembled together into parameter
groups, identified by a PGI (parameter group identifier). The PGl and PI
blocks should be ordered into a list sorted into increasing value of the PGl
and Pl codes.

The method of representing the parameters is described hereafter.

JULY 1989

PeSIT

VERSION 1 CHAPTER 4 119

4.7.2 Coding of the parameters

4.7.2.1 Coding conventions

a) PGl blocks

b)

The PGI blocks contain, in the following order :
a) the PG field which identifies this group of parameters,

b} the LI field which indicates the length of the associated
parameter field,

¢) the parameter field which consists of :

- either a single parameter value {see note),
- or one or more Pl blocks.

NOTE :

A PGl block which contains a single parameter is structurally
equivalent to a PI block.

Pl blocks

The PI blocks consist of, in the following order :

a) the PI field which identifies the parameter,

b} the LI field which indicates the length of the associated
parameter field,

c¢) the parameter field which contains the parameter value.

c¢) Pl and PGI field identifier

d)

The Pl and PGI fields each include a byte which contains
respectively the Pl or the PGl code. The Pi and PGI codes are
expressed as decimal numbers as listed in §4.7.3 and which
should be coded as binary numbers.

Length indicater field LI

The value of the LI field is expressed as a binary number which
represents the length, in bytes, of the associated parameter
field (see note}. A zero value is rejected by the protocol.

The length of the LI field is variable. For parameter field
length comprised between 1 and 254 the length field is one
byte long.

So as to indicate parameter field lengths in excess of 254, but
less less 65536 bytes, the LI field is extended to three bytes
long. The first field is coded as 0xFF and the second and third
bytes should contain the length of the associated parameter
field, the most significant byte is the first of these two bytes.

NOTE :

The value of the Li field does not include the length of the LI
field itself.

JULY 1988 PeSIT VERSION 1 CHAPTER 4 120
Fixed part Variable part
-y . -
TML Pl | LI Value Pl LI Malue
B e -l —-
TML* : 14 bytes, with 2 parameters, of 3
and 1 byte length.
TML PGI| LI| PI'| LI | value | PI | LI [Value
ot ————- -
TML" : 17 bytes, with 1 PGI containing 2 PI,
of 2 and 3 byte length.
T™MLU PG!| LI| Value
————
TML* : 9 bytes, with 1 PGl and no PI, total
parameter length = 1.
* Total message length = TML
e¢) Representation of parameter values

To be able to describe the parameters completely, we must
first define the following value types which are used to code the
different parameters in the coding tables :

C : String of characters. Unfixed length (within the limits

defined); the characters are coded using ASCII 7 bit code.
Right hand spaces are non-significant, completely space
filled value are illegal.

: Numerical. Unsigned binary integer.

: Symbolic. As N, an unsigned binary integer except that

the values have a particular significance. Length 8 bits.

: Bit mask. Byte or word in which each bit has a particular

significance. Length 8 or 16 bits. All undefined bits
should have a zero value. For bits corresponding to
particular options, a bit set to the value "1" indicates
that the option is requested, and the value "0" the
opposite.

JULY 1885

PeSIT

VERSION 1 CHAPTER 4 121

- D : Date and Time. These are coded according to the ISO 2014
and 1SO 3307 standards : YYMMDD and hhmmss, in which
YY = year, MM = month, DD = day, hh = hour, mm =
minutes and ss = seconds. It is represented as a character
string 12 bytes long.

- A : Agregate {mixed). Composed of two or more of the above
value types (e.g. 2 zones - numerical and symbolic).

f) optimising the value field

)

h)

It is recommended to use the minimum length possible for
variable length character strings expressing values.

The character strings should not contain unnecessary spaces
uniess the field is of a fixed length.

For the numerical and symbolic data, all unused leftmost bits
with a zero value should be eliminated. Nevertheless, the
minimum length of a string is one byte.

omitting parameters
Certain parameters may be omitied. The different types are :

- obligatory parameters whose absence from an FPDU would
produce a protocol error.

- optional parameters where a implicit value is defined. This
value is underligned in the parameter description (§4.7.3).
If the parameter is omitted it will be considered to have this
value.

- optional parameters without implicit values, which may or
may not be present in an FPDU.

Repeating parameters

Unless specifically indicated in the service description, any
particular parameter should be present once and once only
within a given message. In an illegal repetition is made, only
the first instance is kept, and an error is notified.

JULY 1989

PeSIT

VERSION 1 CHAFTER 4

122

4.7.2.2 List of the PGl and Pl codes

The different Pl codes used are :

Pl Code

S S I G i Gy NI W RN —
QWD =

MMM NNMMNONNNOND
W~ NWN =0

31
32
33
34
36
37
38
39

41
42

51
52

61
62
63
64

Parameter description

CRC usage
Diagnostics

Caller identification
Server identification
Access control
Version number
Option : checkpointing

File type

File name

Transfer identifier
Requested attributes
Recovered transfer
Data coding
Transfer priority
Recovery point

End of transfer code

Checkpoint number
Compression

Access type

Restarting

Maximum size of a data element
Protocol monitoring time-out
Number of data bytes

Number of articles

Diagnostic complements

Article format
Article length

File attributes

Use of the signature
SIT MAC

File Label

Key length

Key offset

Storage reservation unit
Maximum reserved space

Date and time of creation
Date and time of last access

Customer identifier
Bank identifier

File access control
Server date and time

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

123

71
72
73
74
75
76
77
78
79

80
81
82
83

91
92

Authentication type
Authentication elements
MAC computation type
MAC computation elements
Encryption type
Encryption elements
Digital signature type

MAC

Digital signature

Certificate

Acknowledgement of Digital signature

Second digital signature
Second certificate

Datagram

Free text

The different PGI codes used are :

TITLE

PGl CODE

File identifier

Logical attributes

Physical attributes

Historical attributes

30

40

50

JULY 1989

PeSIT VERSION 1 CHAPTER 4 124

4.7.3

Parameter descriptions

The following pages give the detailed coding of each parameter, profile by
profile. For each parameter the following information is given :

- the name of the parameler,

- the coding type (C, N, §, M, D, A},

- the maximum length of the zone in bytes,

- the coding values allowed (a default value, if it exists, is underligned),

- the "optional” or "optional with default value" indication as defined in §
4.7.21g.

The parameter may also be :

- "conditional” : the parameter is mandatory if the condition is met and
should be omitted if the condition is not met,

- "conditional with default value" : if the condition is met and the
parameter is absent then the default value will be used,

If none of these indications is given then the parameter is mandatory.

Note : when the format of a parameler is not described specifically for
the Secure Non-SIT profile, it is identical to the Non-SIT profile.

JULY 1989 PeSIT

VERSION 1

CHAPTER 4

125

RC USAGE 1
Type : S Length : 1 cptional parameter with default value
SIT
Prohibited
NON-8IT
0 = CRC not used
1 = CRC used

Use of the CRC is mandatory when PeSIT.F' is used with an asynchronous access point (PAD).

ETEBACS

Idem NON-SIT

JULY 1989

PaSIT VERSION 1 CHAPTER 4 1286
DIAGNOSTICS 2
Type : A Length :

SIT

Diagnostics (see ANNEXE D)

Byte 1 . error type

Bytes 2-3 : diagnoslic code

NON-SIT

Idem SIT

ETEBACS

ldem SIT

JULY 1989 PaSIT VERSICN 1 CHAPTER 4 127

CALLER IDENTIFICATION 3

Optional parameter except in the FPDU,.CONNECT

SIT

Type : A Length : 3

Byte 1 (S) : application type

value = 1 : CTE

value = 2 : CTR

value = 3 : IE

value = 4 : IR

Bytes 2 and 3 {N) : Application number (assigned by the Contro! Center)
NON-SIT

Type : C Length : 24

Caller Identification {cf annexe B : mode store and forward, for more information)

ETEBACS

Type : C Length : 24
Caller Identification ;

Bytes 1 to 3 : identifier type {C)
value = ZZZ ; mutually agreed
value = 005 ; CFONB standard
Bytes 4 to 24 : identifier {C)

if standard identifier:

. corporate identifier
. sarvice and individua! identifier

JULY 1989 PeSIT VERSION 1 CHAPTER 4 128

SERVER IDENTIFICATION 4

Optional parameter except in the FPDU.CONNECT

SIT

Type : A Length : 3

Byte 1 {S) : application type

value =1 : CTE

value = 2 : CTR

value = 3 : IE

value = 4 : IR

Bytes 2 and 3 (N) : Application number (assigned by the Control Center)
NON-SIT

Type : C Length : 24

Server ldentificatien (cf annexe B : mode slore and forward, for more information)

ETEBACS
Type : C Length : 24
Server Identification :
Bytes 1 to 3 : identifier type (C)
value = ZZZ : mutually agreed

value = 005 : CFONB standard
value = ZBF : Banque de France code (bank + branch)

Bytes 4 to 24 : identifier (C)

if standard identifiar:
. corporate identifier
. service and individual identifier

JULY 1989 PeSIT VERSION 1 CHAPTER 4 129
ACCE NTROL 5
SIT
Type : C Length : 2
Not used
NON-SIT
Type : C Length : 16

optional parameter.
Bytes 1 te 8 : current password
Bytes 9 to 16 . new password

{if bytes 9 to 18 are absent the password is not altered)

ETEBACS

ldem NON-SIT.

JULY 1989 PaSIT VERSION 1 CHAFTER 4 130
VERSION NUMBER 6
Type : N Length :
SIT

Version number of PeSIT = 1

NON-SIT

Version number of PeSIT

vaiue 1 : version D of 15 novembre 1987 (November 15th 1987)

value 2 : version E of 14 juillet 1989 (July 14th 1989)

ETEBACS

idem NON-SIT

JULY 1988 PeSIT VERSION 1 CHAPTER 4 131
PTION : CHECKPOQINTIN 7
Type : A Length : 3 optional parameter with default value

SIT

Bytes 1 and 2 : interval betwean two checkpoints exprassed in Kbytes {N}

Special Values ;
FFFF (hexadecimal)

Byte 3 : window (N) (if bytes 1 and 2 are different from zero)

Special values :

= unlimited interval
The smallest interval takes precedance over a larger or unlimited interval.

0 = chackpoints are not acknowledged.

The interval between two checkpoints should be greater than or equal 1o 4 Kbytes. The window
should be less than or equal to 16.

NON-SIT

Bytes 1 and 2 : interval betwsen two checkpoints expressed in Kbytes (N)

Spacial Values :
0 = no checkpoints
FFFF {hexadecimal)

Byte 3 : window (N}
Special values :

= unlimited interval
The smallest interval takes precedance over a larger or unlimited interval.

(if bytes 1 and 2 are different from zero)

0 = checkpeints are not acknowledged.

ETEBACS

ldern NON-SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4 132

FILE TYPE 11
SIT
Type : N Length : 2
The list of all file types has been given exhaustively in the network specification docurments of the
SIT.
NON-SIT
Type : N Length : 2

Value = 0 : no specific action required from the file transfer monitor
Other values : used to specify a particular action required between two file transfer menitors :

inan FPDU.MSG :
value FFFF (hexadecimal) : outgoing message

value FFFE (hexadecimal) : return message
other values : file reception acknowledgmant

ETEBACS
Type : C Length : 8

Byte 1: coding type (C)
value = 0 : mutually agreed
value = 1 : CFONB standard

Byte 2: syntax type (C)
value = 0 : CFONB records
value = 1 : EDIFACT massages

Bytes 3 to 7 : application nature (C) (cf. Annexe A2 of "Data exchange between Banks and their
Corporate Customers")

Byte 8 : transfer nature (C)
value = 0 : data fila

value = 1 : data file requesting an ETEBAC 5 execution order
value = 2 : execution order

value = 3 : execution report

value = 4 : bank confirmaticn

value = 5 ! customer acknowledgment

JULY 1989 PeSIT

VERSION 1

CHAFTER 4

133

FILE NAME

12

Type : C Length : 5

Numerical ASCIH string.

NON-SIT

Type : C Length : 76

Alphanumerical ASCI string.

ETEBACS

Type : C Length : 14

Byte 1 : identifier type (C}
value = 0 : mutually agreed
value = 1 : CFONB standard

ICENTIFIER :
if standard identifier :
Byte 2 . reference type (C}

value = 0 ; refarence by ils name
value = 1 : raquest latest version
valus

2 : request non-transmitted versions

value = 3 : request all available versions

format 1 {type = 0)
Bytes 3 to 14 ; file reference (C)

format 2 (type =1, 2, 3)

Bytes 3 to 8 : start date : YYMMODD (D)
Bytes 9 to 14 : end date : YYMMDD (D)

JULY 1989 PeSIT VERSION 1 CHAPTER 4 134

TRANSFER IDENTIFIER 13

Type : N Length : 3

SIT

Numerical value chosen by the caller

NON-SIT

In the FPDU.CREATE

Non zero numerical value chosen by the caller.

If the transfer has been recovered, the transfaer identifier should be identical to that used for the
previous ftransfer fry.

In the FPDU.ACK(CREATE) : optional parameter
Non zero numerical value chosen by the server.

In the FPDU.SELECT

Value = 0 for a new transfer.

For a recovered transfer, the value was determined by the server during the previous transfer
try.

In tha FPDU_ACK(SELECT)
Non zero numerical value chosen by the server.
{For a recovered transfer, identical value to that provided in the FPDU.SELECT).

ETEBACS

Jdem NON-SIT

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

135

REQUESTED ATTRIBUTES

Type : M

Length :

1

optional parameter with defauit value

14

SIT

Not used

NON-SIT

The appropriate bit is set 1o 1 it the corresponding aftributes are required ;
b1 : logical attributas

b2 : physical attributes
03 : historical attributes

b4-b8 : must be set to 0 and otherwise ignored.

Jofaull value = .

In the FPDU.MSG :

value = 0 : no message expected in the FPDU. ACK(MSG)
value = 1 : message expocted in the FPDU.ACK{MSG)

ETEBACS

ldem NON-SIT

JULY 1985

PeSIT

VERSION 1

CHAPTER 4

138

Type : S

RECOVERED TRANSFER

Length : 1

optional parameter with default value

15

SIT

0 ;. new transfer

1 : recovered transfer

NON-SIT

Idem SIT

ETEBACS

Idem SIT

JULY 1989

PeSIT VERSION 1 CHAPTER 4 137
DATA CODING 16
Type : S Length : 1 optional parameter with default value
SIT
Not used
NON-SIT
Type : S Length : 1
0= ASCI|
1 = EBCDIC
2 = binary

= 2 : ressrved for future use

ETEBACS

Idem NON-SIT

VERSION 1

JULY 1589 PeSIT

CHAPTER 4

138

TRANSFER PRIORITY

Type : S Length : 1

17

SiT

pricrity © {urgent)
priority 1 (semi-urgent)
priority 2 {least urgent)

—
IS T |

NON-SIT

Idam SIT

ETEBACS

Idem SIT

JULY 1589 PeSIT VERSIKON 1

CHAPTER 4

139

RECOVERY POINT

Type : N Length: 3

18

SIT

Recovery point (0 = beginning of the file)

NON-SIT

Idem SIT

ETEBACS

Idem SIT

JULY 1989 PeSIT VERSION 1

CHAPTER 4

140

END OF TRANSFER CODE

Type : § Length : 1

19

SIT

= efror (a restart should follow)
suspension

= annulation (by server)

= annulation (by caller)

NON-SIT

Idem SIT

ETEBACS

Idem SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4 141
HECKPOINT NUMBER 20
THDE N LEﬂg“’l 3

SIT

Checkpoint number {0 = beginning of the filo)

NON-SIT

Idem SIT

ETEBACS

Idem SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4 142
COMPRESSION 21
Type : A Length : 2 optional parameter with default value
SIT
Not used
NON-SIT
Byte 1 : data compression
0=no
1 = vyeas

Byte 2 : type of compression
1 = horizontal comprassion

2 = vertical compression
3 = combination of horizonta!l and vertical compression
ETEBACS

Idem NON-SIT

JULY 1989 PeSIT VERSION 1

CHAPTER 4

143

ACCE TYPE

Type : S Length : 1

22

SIT

0 = write

NON-SIT

ETEBACS

ldem NON-SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4 144
RESTARTING 23
Type : § Length : optional parameter with default value
SiTr
Not used
NON-SIT

Q0 = F.RESTART not autorised

1 = F.RESTART autorised

ETEBACS

Idem NON-SIT

JULY 1989 PaSIT VERSICN 1 CHAPTER 4 145

XIMm IZE OF A DATA ELEMENT 25

Type : N Length : 2

SIT

Maximum size of a data element measured in bytes. This length should be greater than 800 bytes.
A data element of 4050 bytes should be able to be supported.

NON-SIT

Maximum size of a data element measured in bytes,

ETEBACS

I[dem NON-SIT

JULY 1589

PaSIT

VERSION 1

CHAPTER 4

148

Type : N

Length : 2

optional parameter with default value

PROTOCOL MONITORING TIME-QUT

26

SIT

Prohibited

NON-SIT

Not used

ETEBACS

Protecel monitoring time-out {in seconds)

30 = 30 seconds

JULY 1989 PeSIT VERSION 1 CHAPTER 4 147

NUMBER OF DATA BYTES 2 7
Type : N Length : 8 Optional parameter

SIT

Prohibited

NON-SIT

Number of data bytes (excluding the length field for multi-article FPDUs), and including the header
bytes of the compression string.
Mandatory paramater for PAD accesses.

ETEBACS

I[dem NON-SIT

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

148

N

MBER OF ARTICLE

Type : N Length

H

optional parameter

28

SIT

Prohibited

NON-SIT

Number of articles

Mandatery parameter for PAD accesses.

ETEBACS

idem NON-SIT

JULY 1989 PaSIT VERSION 1 CHAPTER 4 149
DIAGNOSTIC COMPLEMENTS 29
Type : A Length : 254 optional parameter
ST
Prohibited
NON-SIT

Optional paramater of un-specified format

ETEBACS

Eormat 1 (diagnostic = 310)
byte 1 ; cause X25 (N)
byte 2 : diagnostic X25 (N)

Formal 2 (diagnostic = 318)

byte 1 : numbear of incorrect Pls (N}
byte 2 : Pl cade (N}

byte 3 : error code (8)

value = 1 ; Pl absent

value = 2

: syntax error

valua = 3 ! unsupported value
value = 4 : value outside limit
bytes 4 to 23 : description

Eormat 3 (diagnostic = 321)
bytes 1 tc 15 : backup number (N)

Eormat 4 {(diagnostic = 322)
bytes 1 to 6 : call back waiting time : HHMMSS (D)

JULY 1989

PeSIT

VERSICN 1

CHAPTER 4

150

ARTICLE FORMAT

31

Type : M Length : optional parameter with default value
SIT

!al!!g = !! : !!Q!!

value = 0x80 (hexadecimal) :
NON-SIT

Idem SIT
ETEBACS

ldem SIT

JULY 1989 PaSIT VERSION 1

CHAPTER 4

151

ARTICLE LENGTH

Type : N Length : 2

32

SIT

Length of an article {in bytes)

NON-SIT

Idam SIT

ETEBACS

Idem SIT

VERSION 1

CHAPTER 4

162

JULY 1989

PasSIT

FILE ATTRIBUTES

Type : S

Length :

1

optional parameter with default value

33

SIT

E

1 = relative
2 = indexed

NON-8IT
Idem SIT

ETEBACS
Idem SIT

JULY 1989 PeSIT

VERSION 1 CHAPTER 4

153

E OF THE SIGNATURE

Type : N Length : 2 optional parameter with default value

34

SIT

1 = file signed by the SIT

For transfars from the CTB to the station this parameter is absant or has a value = 0
For transfers from the station to the CTB, value = 1

NON-SIT

Not used

ETEBACS

Not used

JULY 1989 PeSIT

VERSION 1

CHAPTER 4

154

SIT_MAC

Type : N Length : 64

conditional parameter

36

SIT

Present if the Pl 34 value = 1

NON-SIT

Prchibited

ETEBACS

Prohibited

JULY 1989 PeSIT VERSION 1 CHAPTER 4 155
FILE LABEL 37
Type : C Length : 80 optional parameter

SIT

File labe!

NON-SIT

File label

ETEBACS

File labe!

JULY 1989 PaSIT VERSION 1 CHAPTER 4 156
KEY LENGTH 38
Type : N Length : 2 conditional parameter
SIT
Prohibitad
NON-SIT
Parameter present if the file is indexed (P! 33 = 2).
ETEBACS

fdem NON-SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4 157
KEY OFFSET 39
Type : N Length : 2 conditional parameter with default value
SIT
Prehibited
NON-SIT

COffset in bytes of the key in the article.

Parameter present if the file is indexed (Pl 33 = 2)

ETEBACS

Idem NON-SIT

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

158

Type : S

SIT

TORAGE RESERVATI

Length : 1

optional parameter with default value

N UNIT

41

Storage reservation unit :
0 = Kbytes

1

articles

(Pl 31 = 0x80, hexadecimal)

The storage reservation unit should be expressed in Kilo-bytes if the file is variable format

NON-SIT

Idem SIT

ETEBACS

Idem SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4 159
MAXIMUM RESERVED SPACE 42
Type : N Length : 4
ST

Maximum reserved disk space

NON-SIT

Idem SIT

ETEBACS

Idem SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4 160

DATE_AND TIME_OF CREATION 51

Type : D Length : 12

SIT

Date and time of creation {the dates and times are those defined by the SIT, may differ from legal
date and time)

bytes 1 to 6 : date (YYMMDD)

bytes 7 to 12 : time (HHMMSS)

NON-SIT

Date and time of creation

ETEBACS

[dem NON-SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4 161
DATE _AND TIME OF LAST ACCESS 52
Type : D Length : optiona! parameter
ST

Date and time of the last access
bytes 1 to 8 : date (YYMMDD)
bytes 7 to 12 : tima (HHMMSS)

NON-SIT

Idem SIT

ETEBACS

Not used

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

162

CUSTOMER IDENTIFIER

61

Type : C Length : 24
SIT

Prohibited
NON-SIT

optional parameter ;

Identifier of the initial sender (cf annexe B : mode store and forward, for more information)
ETEBACS5

mandatory paramatar :

Customer identification :

Bytes 1 to 3 : identifier type (C)
value = ZZ7 : mutually agreed
value = 005 : CFONB standard

Bytes 4 to 24 : identifier (C)

if standard identifier
. corporate identifier

. service and individual identifier

JULY 1989 PeSIT VERSION 1

CHAPTER 4

163

BANK IDENTIFIER

Type : C Length : 24

62

SIT

Prohibited

NON-SIT

optional parameter ;

Identification of the final receiver . (cf annexe B : mode store and farward, for more

information)

ETEBACS

mandatory parameter :
Bank identification :

Bytes 1 to 3 : identifier type (C)
value = ZZ7 : mutually agread

value = 005 : CFONB standard

value = ZBF : BdF code (bank + branch)

Bytes 4 to 24 : identifier (C)
if standard identifier

. corporate identifier
. service and individual identifier

JULY 1988 PeSIiT VERSION 1 CHAPTER 4 164

FILE ACCE NTR 63

Type : C Length : 16 optional parameter

SIT

Prohibited

NON-SIT

Not used

ETEBACS

Bytes 1 to 8 : current customer password
Bytes 9 to 16 : new password

JULY 1989 PeSIT VERSION t CHAPTER 4 165
SERVER DATE AND TIME 6 4
Type : D Length : 12
SIT
Prohibited
NON-SIT
Not usad
ETEBACS

Bytes 1 to 6 : date (YYMMDD)
Bytes 7 to 12 : time (HHMMSS)

JULY 1989 PeSIT VERSION 1 CHAPTER 4 166
AUTHENTICATION TYPE 71
Type : A Length : 3 optional parameter with default value
SIiT
Prohibited
NON-SIT
Prohibited

Secure NON-SIT

Byte 1 : presence of authantication {3)

0=no

1 = yes

Byta 2 : used algorithm (S)

0 = RSA
1=DES

Byte 3 . procedurse (3)
0 = cerlificate exchange

1 = three-way authentication
2 = three-way authentication using only DES

ETEBACS

Byte 1 : presence of authentication {5)

C=no
1 = yes

Byte 2 : used algorithm (5)

0 = RSA

Byte 3 : procedure (S)
0 = certificate exchange
1 = three-way authentication

JULY 1989

PeSIT

VERSION 1 CHAPTER 4

187

AUTHENTICATION ELEMENT

Type : N Length : n conditional parameter

72

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

Paramaeter present if P1 71, byte 1 = 1 and Pl 71, byte 3 not equal to 0.

if P1 71, byte 3

if Pl 71, byte 3 = 2

in CREATE/SELECT :

in ACK(CREATE/SELECT) :

in ORF :

*

1: ¢f : ETEBAC 5 profile

KEKNAME1 name of the KEK1 encryption key : 8 bytes
KAUTH1 authentication key encrypted under KEK1 : 8 bytes
RN1 DES encrypted under KAUTH1 : 8 bytas

KEKNAMEZ name of the KEK2 encryption key : 8 bytes
KAUTH2 authentication key encrypted under KEK2 : 8 bytes
RN1* DES encrypted under KAUTH2 : 8 bytes

RN2 BES encrypted under KAUTH2 : 8 bytes

RN2* DES encrypted under KAUTHZ2 : 8 bytes

. cf annexe C : use of security mechanisms

ETEBACS

Parameter present if Pl 71, byte 1 =1 and Pl 71, byte 3 = 1.

in CREATE/SELECT :

in ACK{CREATE/SELECT) :

in ORF :

RNt : 8 bytes

RN1 RSA encrypted under sender's secret key : 64 bytes
RN2 : 8 bytes

RN2 RSA encrypted under sender’s secret key : 64 bytes

JULY 1989 PaSIT VERSION 1 CHAPTER 4 168
MAC COMPUTATION TYPE 73
Type : A Length:4 optional parameter with default value
SIT
Prohibited
NON-SIT
Prchibited

Secure NON-SIT

Byte 1: presence of MAC computation (S)

0 =no

1 = yes

Byte 2 : used algorithm (8)

1 =DES

Byte 3 : procedure (8)

1 = transmissioen of partial MACs, article based computation
transmission of final MAC only, article based computation
transmission of partial MACs, computed on complete file
transmission of final MAC only, computed on complete file

B W
nn

Byte 4 : transfer of MAC computation elements {S)

0 = no transfer

1 = plaintext transfer

2
3

RSA encrypted transfer
DES encrypted transfer

ETEBACS

Byte i: presence of MAC computation (S)

Q=10

1 = yes

Byte 2 : used algorithm (S)

1 =DES

Byte 3 : procedura (S5)

1 = fransmission of partial MACs, article based computation
2 = transmission of final MAC only, article based computation
3 = transmission of partial MACs, computed cn complete file
4 = transmission of final MAC only, computed on complete file

Byte 4 : transfer of MAC computation elements (S)

0 = no transfaer
1
2

plaintext transfer
RSA encryptad fransfer

JULY 1989 PaSIT VERSION 1 CHAPTER 4 169
MA MPUTATION ELEMENT 74
Type : N Length : n conditional parametar
SIT
Pronhibited
NON-SIT
Prohibited

Secure NON-SIT

MAC computation elements.

Parameter present if PlI 73, byte 1 = 1 and Pl 73, byte 4 different to 0.

if Pl 73, byte 4 = 1 ;

if PI 73, byte 4 = 2 :

if Pl 73, byte 4 = 3 :

MAC computation key K2 : 8 bytes
initlalisation vector V2

MAC computation key K2 + initialisation vector IV2, encrypted
under the addresses's RSA public key : 64 bytas

KEKNAME name of the encryption key of key KEK : 8 bytes
MAC computation key K2 DES encrypted under KEK : 8 bytes
initialisation vactor IV2 DES encrypted under KEK

ETEBACS

MAC coemputation elements.

Parameter present if P1 73, byte 1 = 1 and P| 73, byte 4 different to 0.

¥WPI73 byted =1

if Pl 73, byte 4 = 2 :

MAC computation key K2 : 8 bytes
initialisation vector V2

MAC computation key K2 + initialisation vector 1V2, encrypted
under the addresses's RSA public key : 84 bytes

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

170

Type : A

ENCRYPTION TYPE

Length :

4

opticnal parameter with default value

75

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

Byte 1: prasence of encryption (S)

Q=no
1 = yes

Byte 2 : used algorithm (8)

0 = RSA
1 =DES
2=0G0C
>= 3 : other

Byte 3 : procedure (8)

1 = article based computation
2 = computation on complete file

Byte 4 : transfer of encryption elements (S)

0 = no transfer
1
2

RSA encrypted transfer
DES encrypted transfer

ETEBACS

Byte 1: presence of encryption {8)

0=no

1 =vyes

Byte 2 : used algorithm (S)

i =DES

Byte 3 : procedure (S)
1 = article based computation

2 = computation on complete file

Byte 4 : transfer of encryption elements (S)

0 = no transfer

1 = RSA encrypted transfer

JULY 1989 PeSIT VERSION 1 CHAPTER 4

171
ENCRYPTION ELEMENTS 76
Type : N Length : n conditional parameter
SIT
Prohibited
NON-SIT
Prohibited
Secure NON-SIT
Encryption elemants.
Parameter present if Pl 75, byte 1 = 1 and Pl 75, byte 4 different of 0,
if Pl 75, byte 4 = 1 : encryption key (K1) + initialisation vector (IV1) encrypted under
the addressee’s RSA public key : 64 byles
if Pl 75, byte 4 = 2 : KEKNAME name of the encryption kay of key KEK : 8 bytes
encryption key (K1) DES encrypted under KEK : 8 bytes
initialisation vector (IV1) DES encrypted under K1 : 8 bytes
initialisation vector {IV1)* DES encrypted under K1 ; 8 bylas
ETEBACS

Encryption elements.

Parameter present if Pl 75, byte 1 = 1 ang Pl 75, byte 4 different to 0.

if Pl 75, byte 4 = 1 encryption key (K1) + initialisation vector {IV1) encrypted under

the addressee’'s RSA public key : 84 bytes

JULY 1989 PaSIT VERSION 1 CHAPTER 4 172
DIGITAL SIGNATURE TYPE 77
Type : A Length : 4 optional parameter with default valus
SIT
Prohibited
NON-SIT
Prohibited

Secure NON-SIT

Byte 1. presence of digital signature (S)

1 = yes

Byte 2 : used algorithm (S)

0 = R5A

Byte 3 : procedure (S)

1 = ETEBAC 5 digital signature

2 = MAC digital signature

Byte 4 : double signature (3)

1 = single signature
2 = double signature

ETEBACS

Byte 1. presence of digital signature (S)

O=no
1 =yes

Byte 2 : used algorithm (8)

0 = RSA

Byte 3 : procedura (8)

1 = ETEBAC 5 digital signature

Byte 4 . double signhature (S)

1 = single signature
2 = double signature

JULY 1989 PeSIT VERSION 1 CHAPTER 4 173
MAC 78
Type : N Length : 4 conditional parameter
SIT
Prohibited
NON-SIT
Prohibited

Secure NON-SIT

MAC.

The MAC is the result of applying the DES encryption algorithm to the file data and to the

paramaters which make up the file FID : PI 11, Pl 12, Pl 51, P! 61, Pl 62.

Parameter present in the FPDU.SYN if the Pl 73 byte 1 =1 and PI 73 byte 3 = 1.

Parameter present in the FPDU.DTF.END if PI 73 byte 1 = 1.

ETEBACS

MAC.

The MAC is the result of applying the DES encryption algorithm to the file data and to the

parameters which make up the file FID : Pi 11, Pl 12, P1 51, Pl 61, Pl 62.

Parameter present in tha FPDU.SYN if the Pi 73 byte 1 =1 and PI 73 byte 3 = 1,

JULY 1989 PeSIT VERSION 1 CHAPTER 4 174

DIGITAL SIGNATURE 79

Type : N Length : 64 conditional parameter

SIT

Prohibited

NON-SIT

Prohihited

Secure NON-SIT
Digital signaturs.
The signature is the result of an RSA encryption undsr the sender's secret key of the MAC related
to the file {file data and FID) and of the MAC related to the FID only : paramaters
Pl 11, Pl 12, Pl 51, Pl 61, Pl 2.

Parameter present in the FPDU.DTF.END if PI 73 byte 1 = 1 and Pt 77 byle 1 = 1.

ETEBACS
Digital signature.
The signature is the result of an RSA encryption under the sender's secret key of the MAC related
1o the file {file data and FID) and of the MAC related to the FID only : parameters
Pl 11, Pl 2, Pl 51, Pl 61, Pl 62.

Parameter present in the FPDU.DTF.END if PI 73 byte 1 = 1 and Pl 77 byte 1 = 1.

JULY 1989 PaSIT VERSION 1 CHAPTER 4 175
CERTIFICATE 80
Type : N Length : 168 conditional parameter

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

Cartificate.

The nature of the certilicate used in the secure Non-SIT PeSIT profile is left up to the choice of

the user.

ETEBACS
Certificate.

Byte 1 (C) : cerlificate type

0 = authentication
1 = digital signature
2 = test

Bytes 2 10 25 (C) : owner identification IDi

Bytes 26 to 37 (C) : device type and serial number NSi

Bytes 38 to 103 (N} owner's public key (modulus + exponent) CPi
Byte 104 (C) : Coertification Authority RSA key pair reference

Bytes 105 to 168 (N) : certificate digital signature

JULY 989 PeSIT VERSION 1 CHAPTER 4 178

ACKNOWLEDGEMENT OF DIGITAL SI 81

Type : N Length : 64 conditional parameter

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT
Acknowledgement of the digital signature.

The use and the nature of the acknowledgement of the digital signature in the secure Non-SIT
PeSIT profile is left up 10 the choice of the user.

ETEBACS
Acknowledgement of the digital signature.

The acknowledgement of the digital signature is the result of an RSA encryption under the
sendar's secret key of . the received MACs + date and time + ACK/NAK,

The field acknowledemant contains two bytes :

byte 1 : check of security elements (C)
0 = accepted

1 = rejocted

2 = not carried out

byte 2 : acknowledgement value (C)
X = meaningless

0 = file transmitted for processing (if protocol integrated security)

JULY 1989 PaSIT VERSION 1 CHAPTER 4 177

ECOND DIGITAL SIGNATURE 82

Type : N Length : 64 conditional parameter

SIT

Prohibited

NON-SIT

Prohihited

Secure NON-SIT

Nat used.

ETEBACS
Second digital signature.
Parameter present in the FPDU.DTF.END f PI 73 byte 1 = 1, Pl 77 byte 1 =1, P 77 byte 4 = 2.

Signature of same format as the Pl 79 but obtained with a different secret key {cf annexe C : Use
of security mechanisms).

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

178

ECOND CERTIF!

Type : N Length

: 168

ATE

conditional parameter

83

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

Not used

ETEBACS

Second certificate.

Certificate of the same format as the Pi 80 but relative to a different key pair (c¢f annexe C : Use
of security mechanisms).

JULY 1989 PeSIT VERSION 1 CHAPTER 4 179
DATAGRAM 91
Type : N Length cptional parameter
SIT
Not used

NON-SIT/Secure NON-SIT

Datagram

ETEBACS

Not used

JULY 1989 PaSIT VERSION 1 CHAPTER 4 180

FREE TEXT 99

Type : Length : 254 optional parameter

SIT

Not used

NON-SIT

Free text

No check is made by the protocol on the coding, the structure or the semantics of the contents of
the free text.

ETEBACS
Free text

The ETEBAC 5 standard imposes that the contents of the free text should be of character type
(ASCII coding).

JULY 1989 PeSIT VERSION 1 CHAPTER 4

181

4.7.4 Protocol element structure

The following pages give the stucture of each message of the protocol for

each profile.

The representation provides a list of the Pi and PGI for each message and

whether the Pl is optional or conditional.

W Optianal Pl

Optional Pl with a default value

Conditional Pl
EXAMPLE :
prafile : SiT
PGl code : 9
7y "'r":..-""f -"r.-""/-" O
7y RERA R ERE
KEY :

(W) : Pl present during a write transfer only
{R) : Pl present during a read transfer only

JULY 1989

PaSIT

VERSION 1

CHAPTER 4

182

1) MESSAGE TYPE 20 = FPDU.CONNECT

sSIT

4

T
7
11

22

L
23
[l

///

////

The FPDU.CONNECT sent by the station does not contain a Pl 5. 1t is accepted that the FPDU.CONNECT
sent by the CTB contain a P15, in which case it is ignored by the station.

NON-SIT/Secure NON-SIT

111 7// ITT1 I]i”” 7}’///
1 3 4 5 B 7 22 23 a9
M r 4/// il il 7227
ETEBACS
HLE ,-"';-:_,.-"' 1T Hi{1TTT “” V///
1 3 4 8 7 22 23 98)
1l é/’/ m il 227

2) MESSAGE TYPE 21 = FPDU.ACONNECT

SIT

LI
7
Ji

TTTIT
23
L

777
%

The FPDU.ACONNECT sent by the station does not contain a PI 5. it is accepted that the FPDU.ACONNECT
sent by the CTB contain a P15, in which case it is ignored by the station.

NON-SIT/Secure NON-SIT/ETEBAC 5

V f,;'/ 1111 LA V///’
72N 2%

JULY 1989

PaSIT

VERSION 1

CHAPTER 4

183

3) MESSAGE TYPE 22 = FFDU.RCONNECT

SIT/NON-SIT/Secure

ETEBACS

NON-SIT

////

° ,’f///

4) MESSAGE TYPE 23 =

FPDU.RELEASE

SITANON-SIT/Secure NON-SIT

W4
//’// /)
ETEBACS
/// 7//7
2 99
//// ,;//A

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

184

5) MESSAGE TYPE 24 = FPDU.RELCONF

SIT/NCN-SIT/Secure NON-SIT/ETEBAC 5

6) MESSAGE TYPE 25 = FPDU.ABORT

SIT/NON-S1T/Secura NON-SIT

2
ETEBACS
. %7
749
Note :

The code P and the length are not present in the FPDU-ABORT, because use of the S-ABORT
service in PeSITanly allows 9 bytes in the user data field (cf : §4.3.1),

JULY t98% PeSIT VERSION 1 CHAPTER 4 185

7) MESSAGE TYPE 11 = FPDU.CREATE

SIT
9
7;{,/:/ 777 LEH
3 4 11 12 13 15 17 25
/,;/A //% 111
30 40 50
T TTTTT Tl TTTTT P77 T,
a1 a2 33 34 41 42 51 52 98)
11l {11 11 i /}’// /’:{f/ 1

The FPDU.CREATE sent by the station does not contain a Pl 18, It is accepted that the FPDU.CREATE
sent by the CTB contain a Pl 16, in which case it is ignored by the station.

NON-SIT

9

7777 7//// T T
3 4 11 12 13 15 16 17 25
&//Aé// Z L HLL

30 40

1111 L
31 a2 a3

111 [11E

i
41 42

i

L A z";-"f// J-"/,:"V /x;/
588 554

Secure NON-SIT

9
s T 12 13 |15 m Tellll 17 25
L, w i oy
30
L LLLL
k3| a2 33
LLLL i
V///V 4 fof
61 ¥/ 62 63
I,

JULY 1989 PeSIT VERSION 1 CHAPTER 4 186
7) MESSAGE TYPE 11 = FPDU.CREATE (following)
ETEBACS
g
T I 1T
' % 4? 11 12 15 16 17 25
LU S 1111 1|
30 40 50
T T T
31 a2 33 41 42 51
11441 1111 [

61 62

777,

[,
2

JULY 1989

PaSIT

VERSION 1

CHAPTER 4

187

8) MESSAGE TYPE 30 = FPDU.ACK {CREATE)

SIT
77777
2 25 a9
S
NON-SIT
/ s / s
2 13 25 a9
ffffﬁ o

Secure NON-SIT

25

ETEBACS

i

25

NN
N\

JULY 1989 PeSIT VERSION 1 CHAPTER 4 188
9) MESSAGE TYPE 12 = FPDU.SELECT
SIT
This FPDU is not used in the SIT profile
NON-SIT
9
s 7 TTTT TTTTY Py
/43;///% 11 12 13 14 15 17 25 "'{/99,/}
2 I ao Y
Secure NON-SIT
9
TTTT Tt VI VI PO
11 12 13 14 15 17 25 ::/,51 ?%32 %SS/
[[T Gt NS X]
s
A
SIS
ETEBACS
9
TTTT TTTTT 7
11 12 13 14 15 17 25 61 62 - ay
LU L/

JULY 1988 PeSIT VERSION 1 CHAPTER 4 189
10) MESSAGE TYPE 31 = FPDU.ACK (SELECT)
SIT
This FPDU is not used by the SIT profile.
NON-SIT
9
AN i 1L
2 543//74? 11 12 13 16 25
ISP, 1!
30 40 50
T TTTT P77
3 a2 33 42 51 %2 % 99?
L 1l NS
Socure NON-SIT
9
77777 T
2 Va// 7/ 12 13 16 25
GRIAP ARSI i
30 40
TTTT T TTTT
31 32 a3 41 42
L TH 1]
50
51

JULY 1989 PeSIT VERSION 1 CHAPTER 4 190
ETEBACS
9
P77 A 77, T 7777,
2 %3’!%47 11 12 13 18 25 [29
A Y L s

30 40

] i

3 32 42

!
[11]

33
L

50

777,

Yy
s R

11) MESSAGE TYPE 13 = FPDU.DESELECT

SIT/NON-SIT/Secure NON-SIT

AL
° éﬁ*f”/;

ETEBACS

9

P77 e A7 77,
: Dy

12) MESSAGE TYPE 32 = FPDU.ACK(DESELECT)

SIT/NON-SIT/Secura NON-SIT

ETEBACS
,y/// ?’fff
2 29 Q9
oL,

JULY 1989 PaSIT VERSION 1 CHAPTER 4

191

13) MESSAGE TYPE 14 = FPDU.ORF
SIT

The FPDU.ORF sent by the station does not contain any parameter. i is accepted that the FPDU.ORF
sent by the CTB contains a P121, in which case it is ignored by the station.

NON-SIT

i

Secure NON-SIT/ETEBAC &

W) W)

14) MESSAGE TYPE 33 = FPDU.ACK(ORF)
SIT

The FPDU.ACK(ORF) sent by the station does not contain a parametar Pl 21, It is accepted that the
FPDU.ACK(ORF) sent by the CTB contains a Pl 21, in which case it is ignored by the station.

NON-SIT

JULY 1989

PeSIT

VERSIKON 1

CHAPTER 4

193

17) MESSAGE TYPE 01 = FPDU.READ

SIT/NCN-SIT/Secure NON-SITAETEBAGC 5

18

18) MESSAGE TYPE 35 =FPDU.ACK(READ)

SIT/NON-51T/Secure NON-SIT

ETEBACS

///

° ,«w/

19) MESSAGE TYPE 02 = FPDU.WRITE

SIT/NON-SIT/Secure NON-SIT/ETEBAC 5

does not contain any paramaters

20) MESSAGE TYPE 36 = FPDU.ACK(WRITE)

SIT/NON-SIT/Secure NON-SIT

2 18
ETEBACS
%%
2 18 29
///A

JULY 1989 PaSIT VERSION 1

CHAPTER 4

194

21) MESSAGE TYPE 08 = FPDU.TRANS.END
SIT

doss not contain any paramaters

NON-SIT

TS AL
”/27

LN,

Secure NON-SIT/ETEBAC 5

o
//,?A

(R)

22) MESSAGE TYPE 37 = FPDU.ACK{TRANS.END)
SIT

NON-SIT

Secure NON-SIT

ETEBAC &

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

195

23) MESSAGE TYPE 00 = FPDU.DTF
SIT/NON-SIT/Secure NON-SIT/ETEBACS

The FPDU.DTF contains the file data but does not contain any parameters.

Note : The FPDU.DTF cannot be empty.

24) MESSAGE TYPE 41 = FPDU.DTFDA
MESSAGE TYPE 40 = FPDU.DTFMA
MESSAGE TYPE 42 = FPDU.DTFFA

SIT

These FPDLU are not used inthe SIT

NON-SIT/Secure NON-SIT/ETEBAC 5

The FPDU.DTFDA, FPDU.DTFMA, FPDU.DTFFA contain part of an article of the file but do not
contain any parameters.

Nota : the FPDU.DTFDA, FFDU.DTFMA, FPDU.DTFFA cannot be empty,

25) MESSAGE TYPE 04 = FPDU.DTF.END

SIT/NON-SIT

Secure NON-SIT

ETEBAC 5

A
%

JULY 1989 PeSIT VERSION 1

CHAPTER 4

196

26) MESSAGE TYPE 03 = FPDU.SYN
SIT/NON-SIT

20

Secure NON-SIT/ETEBAC 5

20

27) MESSAGE TYPE 38 = FPDU.ACK(SYN)

SIT/NON-SIT/Secure NON-SIT/
ETEBACS

20

28) MESSAGE TYPE 05 = FPDU.RESYN
SIT

This FPDU is not used in the SIT.

NON-SIT/Secure NON-SIT

ETEBAC 5

7,
s é///

28) MESSAGE TYPE 39 = FPDU.ACK(RESYN)
SIT

This FPDU is not used in the SIT.

NON-SiT/Secure NON-SIT/ETEBACS

18

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

197

30) MESSAGE TYPE 06 = FPDU.IDT

SIT/NON-SIT/Secure NON-SIT

2 19
ETEBACS
y/f
2 19 29
/;’f/é

31) MESSAGE TYPE 3A = FPDU.ACK(IDY)

SIT, NON-SIT, Secure NON-SIT,ETEBACS

does not contain any parameters.

JULY 1588

PaSIT

VERSION 1

CHAPTER 4

198

32) MESSAGE TYPE 16 = FPDU.MSG

SIT

This FPDU is not used in the SIT.

NON-SIT

9

L
YA

NN

No

12

11
1

7
/,1;'1% II?I

50

/7 7y ////

51 81
LI,

Secure NON-SIT

12

yffy L
G///// LI

50

77777
57

ETEBAC 5

This FPDU is not used.

///7;

JULY 1989 PaSIT

VERSION 1

CHAPTER 4

199

33) MESSAGE TYPE 17 = FPDU.MSGDM
SIT

This FPDU is not used in the SIT.

NON-SIT

9

o

TN 77
éj/ﬁ&,ﬁ/ﬁ 11 12 13

e/
Al

50
7/// 7/// yf/?;/ z“'{,/
S

9

A 12 a1
AL, Al

a0
VAL, LA VA LA
Y554

NN

%5 =

Y

ETEBACS

This FPDU is not used.

34) MESSAGE TYPE 18 = FPDU.MSGMM
SIT

This FPDU is not used in the SIT.

NON-SIT/Secure NON-SIT

:’/’ v
Y

ETEBACS

This FPDU is not used.

JULY 1989 PeSIT VERSION 1

CHAPTER 4

200

35) MESSAGE TYPE 19 = FPDU.MSGFM
SIT

This FPDU is not used in the SIT.

NON-SIT

757
2r7

Secura NON-SIT

ETEBACS

This FPDU is not used.

36) MESSAGE TYPE 3B = FPDU.ACK(MSG)
SIT

This FPDU is nat used in the SIT.

NON-SIT

-

777 A

NN
NN

Secure NON-SIT

77
2 3
4} 7

ETEBACS

This FPDU is not used.

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

201

4.8 PeSIT PROTOCOL STATE MACHINE TABLES

4.8.1 Formal description elements

This chapter provides a formal description of the protocol in terms of a
complete finite state machine with the states, events and associated actions.

This description is equally applicable to PeSIT.F, PeSIT.F', PeSIT.F" and

PeSIT.F",

The state tables described in this chapter indicate, for each state possible
during a PeSIT connection, the events which may occur in the protocol, the

actions to be carried out and the resulting state.

Before describing the state tables, the abreviations used will be defined.

4.8.1.1 States

ABREVIATION NAME AND DESCRIPTION
CN... PeSIT establishment raegimae
CNO1 IDLE, not connected
CNO2A | Connection pending reception of an FPDU.ACONNECTor RCONNECT
CN02B Connection pending reception of an F.CONNECT, R primitive
CN03 OONNECTED
CNO4B | Release pending reception of an FPDU.RELCONF
CND4B Release pending reception of an F.RELEASE, R primitive
5. SELECT FILE REGIME
SF01A | File create pending reception of an FPDU.RELCONF
SFo1B File create pending reception of an F.CREATE, R primitive
SFo2A File seclect pending reception of an FPDU.ACK(SELECT)
SF02B File seclect pending reception of an F.SELECT, R primitive
SFo3 FILE SELECTED
SF04A File release pending reception of an FPDU.ACK(DESELECT)
SFo4B File release pending reception of an F. DESELECT, R primitive
CF... FILE OPEN REGIME
OF01A Open file pending reception of an FPDU.ACK({ORF)
OF01B Open fite pending reception of an F.OPEN, R primitive
OFo02 DATA TRANSFER - IDLE
OF03A File close pending reception of an FPDU.ACK(CRF)
OF03B File close pending reception of an F.CLOSE, R primitive

JULY 1989 PeSIT VERSION 1 CHAPTER 4 202
ABREVIATION NAME AND DESCRIPTION
TOL... BULK DATA TRANSFER - REGIME

TDLO1A | Read pending reception of an FPDU.ACK(READ) (Callar)

TDLO1B | Read pending reception of an F.READ,R primitive (Server)

TDLO2A | Data reception (Caller)

TOLOZB |Data transmission (Server)

TDLO3 Restarting pending reception of an FPDU.ACK(RESYN)

TDLO4 Restarting pending reception of an F.RESTART,R primitive

TDLOS Transfer interruption pending reception of an FPDU.ACK(IDT)

TDLOB Transfar interruption pending reception of an F.CANCEL, R
primitive

TDLO7 End read

TDLOBA |End read transfer pending reception of an FPDU.ACK({TRANS.END}
{Caller)

TDLO8B | En read transfer pending reception of an F.TRANSFER.END,R
primitive (Server)

TOE... BULK DATA TRANSFER - REGIME

TDEO1A | Write pending reception of an FPDU.ACK{WRITE) (Caller)

TDEOIB | Write pending reception of an F. WRITE, R primitive (Server)

TDEG2A |Data transmission (Calter)

TDEC2B |Data reception {Server)

TDEO3 Restarting pending reception of an FPDU.ACK(RESYN)

TDEO4 Restarting pending reception of an F.RESTART,R primitive

TDEOS Transfer interruption pending reception of an FPDU.ACK(IDT)

TEDGS Transfer interruption pending reception of an F.CANCEL, R
primitive

TDEQ? End write

TDEO8A | End write transfer pending reception of an FPDU.ACK(TRANS.END)
(Caller)

TODEOBB | End write transfer pending reception of an F. TRANSFER.END, R
primitive (Server)

Note :

The F.XXXX,R abbreviation indicates a response primitive.

All states ending in the letter "A" concern the PeSIT caller and all
those ending in the letter "B concern the server. The other states
are common to both units.

4.8.1.2 Events

In order to describe the complete finite state machine of a PeSIT
unit, the incoming events ara :

- either the reception of a service primitive from the local user
(request or response),

- or the reception of an FPDU from the opposite PeSIT,

- or the detection of an error (expiration of a monitoring time-
out or a protocol error).

JULY 1089

PeSIT

VERSION 1 CHAPTER 4 203

4.8.1.3

The main outgoing events are comprised of the emission of :

- a service primitive towards the local user (indication or
confirmation),

- or a message intended for the opposite PeSIT unit.

The following abreviations are used to define the events :
XX tFPDULXXX

A (XXX} :FPDU.ACK replying to an FPDU.XXX

YYY(D} : request primitive for the YYY service

YYY(I) 1 indication primitive for the YYY service
YYY(R}) : response primitive for the YYY service
YYY(C} : confirmation primitive for the YYY service.

The allowed values for XXX and YYY are given in 4.2.

Conditions

The state transitions and the actions are sometimes conditional.
The abreviations related to these conditions are defined as

follows

ABREVIATION NAME AND DESCRIPTION

+ Positive ACK {OK or warning)

- Negative ACK (correctable or blocking)
ab Premature transfer termination (1)
ck Checkpointing option negotiated

dr The caller is the receiver

ret Recovery requested

cft end of transfer code = cancel or suspend
cc>0 There are unacknowledged checkpoints

(1} "ab" is set by an F.CANCEL when the "end of transfer code” =
suspend or cancel. It is reset by an F.DESELECT. It is used to
prevent F.READ (or WRITE) or F.OPEN from looping if a
transfer is terminated prematurely,

The following symbol - condition equivalence is used :

- & AND.

JULY 1989

PeSIT

VERSICN 1 CHAPTER 4 204

4.8.1.4 Actions

The actions may be conditional or unconditional. Any particular
action consists in :

- sending an outgoing event, indicated by its abbreviated name,

- or execuling a specific action,

- or imposing a condition.

When several actions are specified, they must be executed in the
order shown.

a)

b)

Implicit actions

A certain number of actions are not specified in the state
tables, because they are implicit. These actions are :

when there is an empty intersection in the table (the
corresponding event is invalid), the connection is
prematurely terminated (ABORT)} with an appropriate
diagnostic code,

for each FPDU received, a systematic check is made
(validation of the parameters used). If an error is detected,
the recovery procedure is invoked,

if a premature termination request is received, the
following state is always "idle" regardless of the current
state {except CNO1), the ABORT is notified to the local user
or the opposite PeSIT unit and all the parameters are re-
initialised.

Specific actions

REC The following message was received from the

"communication system”

SAB Set premature termination flag

RESAB Reset premature termination flag

XK Set checkpoint negotiated flag

RESCK Reset checkpoint negotiated flag

SDR Set caller = receiver flag

RESDR Reset caller = receiver flag

SREL Set recovery flag

RESREL. Reset recovery flag.

JULY 1989

PeSIT VERSION 1 CHAPTER 4 205

4.8.2 Conventions

To simplify the presentation, each state table is a part of the general table.
The left column indicates the events and the uppermost line the different
states.

Each intersection in the table between an event and a state contains :

general condition {optional)
(cond ;) NEXT STATE (mandatory)
(cond :) ACTION (optional}

in which :

- the general condition is a condition which is valid for the entire
intersection (expressed as "COND : cond"),

- {cond :} is an optional condition which applies to the following line : the
conditions are always written in lower case letters,

- NEXT STATE . is the next state once all the indicated actions have been
executed. The states are always written in upper case letters,

- ACTION entails sending an outgoing event, imposing a condition or
executing a specific action. |f several actions are specified, the must be
executed in that order. The actions are always written in upper case
letters.

The following special characters are also used :
" end of condition code,
";" separator between list items.

An intersection in the table is considered 1o be invalid if no indication is
given or if the general condition indicated by "COND" is not met.

Ali invalid intersections between states and “incoming service primitive"
events (request or response) are considered to be local errors and as such
are net standardised in this document.

When the general state table was broken down into smaller sub-sections, all
the lines and all the columns of the sub-tables which contained empty
intersections were removed. Thus any intersection which does not occur in
the state tables is implicitly invalid.

Intersections marked "null" are valid event/state intersections were no
action is executed and the finite state macine remains in the same state.

JULY 1989

PeSIT

VERSION 1

CHAPTER 4

206

4.8.3 Collision

4.8.4 State tables

rules

in the data transfer phase, collision cases may occur. The following rules
should be applied in these cases :

1. Pricrity order of the FPDUs

1 - ABORT

2 -1DT

3 - RESYN

4 - TRANS.END
5 - ACK.SYN
6 - DTF.END

7 - DTF

2. if a collision occurs between two FPDUs of the same type, then the caller

is given priority over the server,

There are two sets of state tables which are very depending on the roles
assumed by the PeSIT units : caller or server. For the data transfer state
machine, four separate tables have been defined :

+ caller-sender, caller-receiver, server-receiver, server-sender.

TABLE PROTOCOL PHASE ROLE

1 regime establishment caller

2 regime establishment server

3 file select caller

4 file select server

5 file open caller

4] file open server

7 data transfer caller-sender (write)
8 data transfer server-receiver (write)
9 data transfer caller-receiver {read)
10 data transfer server-sender {read)

JULY 1989 PaSIT VERSION 1 CHAPTER 4 207
TABLE 1 : regime establishment {(caller)
CNO1 CNO2A CNO3 CNO4A
F.CONNECT(D) CN0O2A
CONNECT
ACONNECT CNO3
F.CONNECT(C)
ck 1 SCK
RCONNECT CNO1
F.CONNECT(C)
F.RELEASE(D) CNO4A
RELEASE
RELCONF CNO1
F.RELEASE(C)
¢k : RESCK
F.ABORT(D} CNO1 CNO1 CNO1
ABORT ABORT ABORT
ABORT CNO1 CNO1 CNOA1
F.ABORT() F.ABORT(l) | F.ABORT(!)

JULY 1989 PeSIT VERSION 1§ CHAPTER 4 208
TABLE 2 : regime establishment (server)
CNO1 CNoz2B CNO03 CNO4B
CONNECT(R) |CNO2B
F.CONNECT(I
F.CONNECT(R + 1 CNQO3
- CNO1
+ :A.CONNECT
ck : SCK
- :R.CONNECT
RELEASE CNO4B
F.RELEASE(l
F.RELEASE(R) CNO1
RELCONF
ck : RESCK
ABORT CNoO1 CNO1 CNO1
F.ABORT(l) F.ABORT({l} | F.ABORT(l}
F.ABORT{D) CNOA1 CNO1 CNO1
ABORT ABORT ABORT

JULY 1989 PeSIT VERSION 1 CHAPTER 4 209
TABLE 3 : File selection phase (caller)
CNO3 SFO1A SFo2A SFo3 SFO4A
F.SELECT(D) SF02A
SELECT
A.(SELECT} +: SF03
- . CNO3
F.SELECT(C) ;
SDR
rai : SREL
F.CREATE(D) SFO1A
CREATE
A(CREATE) +: SF03
« 1 CNO3
F.CREATEI(C)
rel : SREL
F.DESELECT(D) SFo4A
DESELECT
A{DESELECT) CNo3
F.DESELECT(C)
ab . RESAB
dr: RESDR

rel : RESREL

JULY 1989 PeSIT VERSION 1 CHAPTER 4 210
TABLE 4 : File selection phase (server)
CNO03 SFO1B SFo28 SFo3 SFo4B
SELECT SFozB
F.SELECT(N
F.SELECT{R) + : SFo3
- 1 CNo3
A(SELECT)
rel : SREL
CREATE SFoiB
F.CREATE({l)
F.CREATE(R} +: SF03
- 1 CNo3
A{CREATE)
rel : SREL
DESEIECT SFo4B
F.DESELECT(l)
F.DESELECT(R) CNOo3
A{DESELECT)

ab : RESAB

JULY 1989 PeSIT VERSION 1 CHAPTER 4 211
TABLE 5 : File opening phase (caller)
SF03 OF01A OF02 OF03A
F.OPEN (D) COND : NOT ab
OF01A
CHF
A{ORF) +: OF03
- : SF03
F.OPEN {C)
F.CLOSE (D) OF03A
CRF
A(CRF) SFO03
F.CLOSE (C)
TABLE 6 : File opening phase {server)
SFO3 OFo1B OF02 OF03B
OFF COND : NOT ab
QF01B
F.OPEN{])
F.OPEN (R} + : OF02
- : SFo3
A{ORF)
CRF OF03B
F.CLOSE ()
F.CLOSE (R) SFO3

A (CRF)

JULY 1989 PeSIT VERSION 1 CHAPTER 4 212
TABLE 7 : Data transfer phase Caller-Sender
QF02 TDEC1A TDEC2A TDEOG3 TDEO4 TDED5 TDEDS TDEO? TOEORA
FMWRITED) COMD.MNCT ab
TDEQ1A
WRITE
AWRITE) +TDEO2A
-:0OFD2
FWATEC)
F.CANCEL(D) TDEQS TDEQS TDEQS TOEDS TOEDS TDEDS
1DT 10T DT 10T 0T 10T
A{IDT) oFoz
F.CANCEL{C)
SAB
BT TDECE TDEOS TDEQS NULL NULL TOEDG TDEOE
F.CANCELy | F.cANCEL(Y | F.cancELy F.CANCELY) | F.oancEL
F.CANCE.(R) OFp2
A{IDT}
SAB
F.DATA.END{D) TDEOT NLLL NLL
DTF.END
cft : SAB
F.TRANSFERENIND) NULL TDEOBA
TRANS.END
A{TRANS.END) ML NUEL OFD2
F.TRANSFER.
BNDIC)
F.DATA({D) TDEQ2A NULL MNULE
DOFF
F.CHECKID) CONDckice NULL NULL
<256
TOEO2A
SN
AISYM) CONDxe>0 NLLL MNULL TREOT NULL
TDED2A F.CHECK(C)
F.CHECKIC)
F.AESTART{D) CONDk TDEQI NULE
TDEQ3 RESYN
RESYN
A{RESYN) TDED2A NULL
F.RESTART(C)
RESYN CONDxk ML ML CONDrk. CONDzk
TDEX4 TDEC4 TDEO4
F.RESTART{) F.AESTART(D | F.AESTAR
F.RESTART{R) TDEGZ2A NULL
A{RESYN)

JULY 1989 PeSIT VERSION 1 CHAPTER 4 213
TABLE 8 : Data transfer phase Server-Receiver
OF02 TDEOIE | ToEo28 | TOEO3 TOEO4 TDEOS TDEOS TDEO? TDEDRE
WRTE CONDNCT ab
TDEC1B
F.WRITE(l}
FWRITE(R) +: TDEO2B
-: QF02
AWRITE)
+!AEC
F.CANCEL{D) TODEOs TODEOS TDEOS NULL TDEDS TDECS
DT DT IDT DT 107
A(IDT) OF02
F.CANCEL{C)
SAB
10T TDEDS TDEDS TOEDE TDEOE TDES TDEOB
F.CANCEL(l) |} F.CANCEL() | F.CANCEL() | F.CANGEL() F.CANCEL{l} [F.CANGEL{!)
F.CANCEL{R) OFa2
A{IDT)
5AB
OTREND TDEOY MELL ML
F.DATA END{}
cht : S5AB
TRANS.BEND NULL NULL TDECEB
F.TRANSER
END(I
F.TRANSFEREND(R} NULL OFRx2
A[TRANS.END)
F.CHECKIR) TDEgJ2B NULL NULL TDEC?
ALSYN) {ASYN)
REC
oTF TDEC2B ML MNULL
F.DATA(H
PEC
BN CONDicklice | NULL NALL
<2658
F.CHECK{1}
229
F.RESTART{D) COMDzk NULL NULL COND: ek COND : ck
TOER TDEQ3 TOECA
RESYN RESYN RESYN
A{RESYM) TDEOC2B NULL
F.RESTART(C)
[3=H
AESYN COND .k COND ¢k NULL
TDEQ4 TOEQ4
F.RESTART(l) | F.RESTART(l}
F.RESTART(R) TDEO28 NULL
AIRESYN)
REC

JULY 1989 PeSIT VERSION 1 CHAPTER 4 214
TABLE 9 : Data transfer phase Caller-Receiver
OF02 TDLO1A | ToDloza | TbLos TDLO4 TDLOS TOLOS TDLO? TOLOSA
F.READ{D) COND : NOT ab
TOLDYA
READ
A{READ) +: TDLO2A
-: OF02
F.READ{C)
+:AEC
F.CANCHEL(D} TOLRS TDLOS TDLOS TOLOS TDLOS TOLO6
10T DT IDT DT IDT DT
A{IDT) OfFe
F.CANCELIC)
SAB
107 TOLOE TDLOS TDLOB NULL TDLO& TDLD&
F.CANCELfY | F.caNcELyy | F.CANCEL() F.CANCEL{) | F.CANCEL(l
F.CANCEL(R) QFg2
A(IBT)
SAB
DTFEND TOLO? ML MULL
F.DATA.END{I)
cit : SAR
F TRANSFER(D) NULL NULL TOLOSA
TRAMS.END
A[TRANS.END) NULL NAL oFpe
F.TRANSFER
END(C)
DTF TOLO2A NLLL MNULL
F.OATAL)
F.CHECK(R) COMD : chce NLLL NULL NULL
<256
A{SYN)
SN COND i@ | NLLL NLLL
TOLO2A
F.CHECK(l)
F.RESTARTID} COND :ck COND : ck MNULL COND ek COND :ck
TDLO3 TOLO3 TDLO3 TDLO3
RESYN RESYM RESYN RESN
A{RESYN) TDLOZA MAL
F.AESTART(C)
RESYM COND : ¢k NULL MNLL
TOLOA
F.RESTART{N
F.RAESTART{R) TDLO2A
A(RESYN)

JULY 1989 PeSIT VERSION 1 CHAFTER 4 215
TABLE 10 : Data transfer phase Server-Sender
QFa2 TDLO1B TOLOZB TDLO3 TOLO4 TDLOS TDLO& TDLO? TDLOBB
READ COND :NCT ab
TOLOtB
F.READI{l)
F.READ{R) +: TOLD2B
- QF02
A(AEAD)
F.CANCEL{D) TDLOS TOLOS TDLOS NULL TOLOS TOLOS
10T DT DT DT IDT
ALIDT) OFD2
F.CANCEL(C)
SAB
10T TDLOB TOLO8 TODLO8 TDLO& TOLOS TOLOG
F.CANCELYl) | F.cANCEL(ly | F.CANCEL[l) | F.CANCEL{!) F.CANCEL{l} | F.CANCEL[
F.CANCEL{A) QF02
A(IBT)
SAR
F.DATA.END(D) TDLO? HULL NULL
OTFEND
clt : SAB
TRANS.BEND NULL TOLORB
F.TRANS.END{|
F.TRANSFEREND(R) MNULL OF02
ATRANS.END}
F.DATA(D) TOLR28 NULL NULL
oTF
AR
A(SYN) COND : ckéoc | NLLE NULL NULL
<2598
F.CHECK(C)
F.CHECKID) TOLO2B NULL NULL
SYN
3=
F.RESTART(D) COND 1ok NULL NULL
TOLO3
RESYN
A{RESYN) TOLOZB NLULL
F.RESTARTIC)
32
RESYM COND : ¢k COND : ck MNULL COND :ck
TDLO4A TOLO4 TDOLO4
F.RESTART{} | F.RESTART(Y F.AESTART{I)
F.RESTART{R) TDLO2B NULL
A(RESYN)
G

JULY 1989

PeSIT

VERSICN 1

ANNEXE 1

Al-1

ANNEXES

JULY 1989 PeSIT VERSION 1 ANNEXE 1 Al-2

ANNEXE 1 : COMPRESSION
1. Negotiation of compression type

2. Definition of compression types
3. Interval between checkpoints when compression is used

1. NEGOTIATION OF COMPRESSION TYPE

The PeSIT protocol allows data compression to be requested in the FPDU.ORF. To do so the Pl
21, which contains two bytes, is used :

- The first byte has two possible values ;
. 0 no compression,
. 1 compression suggested.
- The second byte has the following meaning :
. 1 horizontal compression,
. 2 vertical compression,
. 3 both horizontal and vertical compression.
The FPDU.ACK(ORF) contains the same PI21. The allowable values in this reply are ;

- Byte 1 = 0 compression is refused,

- Byte 1 = 1 compression is accepted. In this case and provided that the second byte of the PI
21 in the FPDU.ORF was 3, then the second byte of the reply has the following meaning :

. 1 horizontal compression only,
. 2 vertical compression only,
- 3 horizontal and vertical compression accepted.

2. DEFINITION OF COMPRESSION TYPES

- Horizontal compression

The horizontal compression is applied to identical consecutive characters. If this
compression type was accepted at file opening time then each article in the file is broken up

into strings. Each string is preceeded by a string header byte whose significance is as
follows :

bit 7, bit 6, bit5, bitd, bit3, bit2, bit1, bit0Q

- bit 7 :

. 0 the string is not compressed,
. 1 the string is compressed.

JULY 1989 PaSIT VERSION 1 ANNEXE 1 At1-3

- bit 6

. 0 horizontal compression,
. 1 vertical compression {not used in this context).

Note :

Once horizontal compression has been negotiated the only permissible values of bits 7 and 6 are
00 or 10 (01 and 11 are prohibited).

-bits 0 to 5 :
Length of the string {1 to 63 bytes), excluding the header byte.

If the string is compressed the single character folowing the header byte is the component
character.

Example ;

The string 01 02 02 02 02 02 02 03 becomes 01 01 86 02 01 03.
- Vertical compression

This compression type is applied by comparing consecutive articles.

The first article is never compressed, but should nevertheless be preceeded by the string
header byte defined below,

From the second article onwards, each article is compared with the previous article so as to
identify identical character sequences.

Note :

In order to simplify the recovery mechanism the first article following each checkpoint is
never compressed vertically.

Each article in the file is broken up into strings preceeded by a string header byle whose
significance is as follows :

bit 7, bit6, bit5, bit4, bit3, bit2, bit1, bit0

- bit 7 :

. 0 the string is not compressed,
. 1 the string is compressed.

- bit 6

. 0 horizontal compression (not used in this context),
. 1 vertical compression.

Note :

Once vertical compression has been negotiated the only permissible values of bits 7 and 6 are
00 or 11 (01 and 10 are prohibited).

JULY 1989 PeSIT VERSION 1 ANNEXE 1 Al-4

- bits 0 to 5 ;
Length of the string (1 to 63 bytes), excluding the header byte.
Exampie :

. 1st article 01 02 03 02 03 05 06 Q7
. 2nd article 05 06 03 02 03 05 08 09

These two articles become :

. 1st article 08 01 02 03 02 03 05 06 07
. 2nd article 02 05 06 C4 02 08 09

The string 03 02 03 05 in the second article has been compressed.
Note :

if two consecutive articles do not have the same length then the hexadecimal character 0x40
is used to pad the shorter string before compression.

- Combined horizontal and vertical compression
During the same transfer it is possible to use both horizontal and vertical compresion at the
same time. In which case each article is broken up into sub-strings and each sub-string may
be compressed either horizontally or vertically. The choice of which compression type is
applied to a particular sub-string is left up to the protocol designer.
If vertical compression has been chosen for a sub-string and the previous article to which
the vertical compression algorithm refers was itself compressed horizontally, then the
vertical compression algorithm will refer to the version of the article before it was
compressed.
Example :

. 1st article 01 01 01 01 02 03
. 2nd article 01 01 01 01 02 04

These two articles becomas :

. 1st article 84 01 02 02 03
. 2nd article C5 01 04

3. INTERVAL BETWEEN CHECKPOINTS WHEN COMPRESSION IS USED

The interval between checkpoints, when compression is being used, is caiculated using the
compressed data, such as they were actually transmitted.

The string header bytes should be included in the character count for calculating the interval
between checkpoints,

JULY 1989 PeSIT VERSION 1 ANNEXE 2 A2-1

ANNEXE 2 : STORE and FORWARD OPERATION

1. Introduction
2. Incidence on the protocol
3. FPDUMSG

1.

INTRODUCTION

The term store and forward is used to describe a mechanism which allows files to be routed
from one machine to another. In this mode a file transmitted by machine A and intended for
machine C to which there is no direct connection, will transit by a third (or more) machine(s)
B which having received the file from A will be able to retransmit it to C.

INITIAL FINAL
SENDER : A RECEIVER :C
Local Local
PeSIT PeSIT
TRANSIT
NODE :B
STORE and FORWARD

PeSIT is a local protocol - i.e. the parameters are only significant during a connection between
two corresponding PeSIT units linked by a virtual circuit (PeSIT.F), an ISO session connection
{PeSIT.F), or a NETEX connection {PeSIT.F") - so to authorise a store and forward mode
requires a definition of how the PeSIT addressing scheme may allow a file to be routed and to
determing which of the parameters should be transfered with the file during the successive
connections between the different intermediary nodes in a network.

As a case study we shall only define here the case of a write file transfer and we shall consider
the following points :

* addressing : for any given transfer we must identify the partners who will execute this
stage of the transfer (caller and server for a PeSIT connection} and the partners for whom
the transfer is being executed (initial sender and final receiver).

* transfer identifiers : we must define non-ambiguous transfer identifiers within the
store and forward domain.

transfer acknowledgement : we must provide the initial sender with an indication that
the file has effectively reached the final receiver {end to end acknowledgement).

JULY 1986 PeSIT VERSION 1 ANNEXE 2 A2-2

2. INCIDENCE ON THE PROTOCOL

1. For the FPDU.CONNECT

2.

The Connection phase seis up a relation between two partners linked by a direct connection :
the parameters in the FPDU.CONNECT and the FPDU.ACONNECT are strictly local.

Pl 3 and PI 4 : identify the partners between whom the connection is set up : a string of 1 to
24 bytes.

For the FPDU.CREATE

As of the selection phase it is possible to distinguish the local parthers from the end-to-end
partners. The Pl 61 and Pi 62 (Customer identifier and Bank identifier from ETEBACS)
are used to identify the initial sender and the final receiver. These parameters will allow
the intermediate monitors to reroute the file to the next machine in the chain. The Pl 3 and
Pl 4 (optional) in the FPDU.CREATE are used to provide are more precise address.

Pl 3 and Pl 4 : 24 bytes :

- bytes 1 to 8 : application name
- bytes 9 to 16 : user name
- bytes 17 to 24 : unreserved

Pl 61 and Pl 62 (optional) : define the end-to-end partners for whom this transfer is
being carried out : initial sender and final receiver : 24 bytes.

The PI 13 (transfer identifier} helps to provide an unambiguous identification of the
transfer : the same Pl value will be propagated in each successive transfer for the same
file. This applies only to the Pl 13 in the FPDU.CREATE, the optional Pl 13 in the
FPDU.ACK(CREATE]} that the server returns is "for information only” and will be specific
to each transfer.

The file identification will be made up of the following parameters :

Pl 11 (file type},

Pl 12 (file name),

Pl 13 (transter identifier),

Pl 81 (initial sender identification},
Pl 62 (final receiver identification).

. FPDU.MSG

The FPDU.MSG will be used fo transport the end-to-end transfer acknowiedgement. The
contents of this FPDU.MSG will be :

PGl 9 :

- Pl 3 : caller's identification (optional) : identical to the Pl 4 which was in the
FPDU.CREATE used for the file transfer being acknowldeged by this FPDU.MSG*,

- Pl 4 : server's identification {optional) : identical to the Pl 3 which was in the
FPDU.CREATE used for the file transfer being acknowledged by this FPDU.MSG*,

Pl 11 : file type : Pl 11 of the file transfer being acknowledged,

Pl 12 : file name : Pl 12 of the file transfer being acknowledged,

JULY 1989

PeSIT

VERSION 1

ANNEXE 2

A2-3

- Pl 13 : transfer identifier :

acknowledged,

Pl 13 used end-to-end for the file transfer which is being

- Pl 14 : requested attributes : unused,

- Pl 16 : Data coding (optional)

PGl 50 :

- PI 51 : P{ 51 of the file transfer being acknowledged,

- Pl 61

- Pl 62 :

- Pl $H

* if this Pl makes up part of the file identification.

present,

Historical attributes :

: Initial sender identification
being acknowledged,

Final receiver identification

being acknowledging,

: text {optionatl).

: may allow decoding of the contents of the Pl 91, if

: identical to the Pl 62 of the file transfer which is

: identical to the Pl 61 of the file transfer which is

JULY 1989 PeSIT VERSICN 1 ANNEXE 3 A3-1

L3 Mo —

ANNEXE 3 : USE OF THE SECURITY MECHANISMS

. Introduction
. Implementation of the algorithms
. Use of certificates

INTRODUCTION
The use of security mechanisms within file transfers is part of two profiles in PeSIT :

- the ETEBACS profile,
- the secure Non-SIT profile.

The ETEBACS profile resulted from the work of the ETEBACS study groups ("transport” and
"security” groups) of the CFONB. The complete description of the use of the security in the
ETEBACS standard may be found in the document "Computer Information Exchange between
Banks and thelr Customers” published by the GSIT. It should be noted that use of the ETEBACS
profile presumes the use of appropriate certificates whose production and distribution to the
ETEBACS partners is controlled by the CFONB.

The secure Non-SIT profile came about by a wish to implement security functions outside the
ETEBACS environment. This profile uses the same security parameters as were defined for
ETEBACS. However it has been designed to allow the different functions : reciprocal
authentication, integrity, confidentiality to be implemented with only the DES {(Data
Encryption Standard) algorithm whereas the ETEBACS profile has mandatory use of the RSA
(Rivest Shamir Adleman) aigorithm as well.

The readers attention is drawn 1o the fact that the use of cryptographic devices and algorithms
on data to be transmitted across public networks must comply with the local legislation.

. IMPLEMENTATION OF THE ALGORITHMS

2.1 DES Encryption

The implementation of the DES encryption is described in the ISQ DP 10126 document. An
initial chain length of 8 bytes is used. Padding is used to obtain encryption fields of a
length which is a multiple of 8 bytes.

2.2 MAC computation

The imptementation of the DES MAC computation is described in the ISO DIS 8731
document. The DES is used in CBC mode, with an initial nul chaining value, and padding
using 0 binary.

2.3 Order of executlion
The MAC computation is carried out on the plain text data.
The encryption is carried out on plain text data (the MAC is not part of the data).

The encryption and the MAC computation may be executed article by article, or on the
whole file. In the article-by-article mode paddding is added at the end of each article, in
the whole-file mode padding is only added at the end of the file. The mode chosen is
indicated in the “operating mode” bytes of the "MAC computation type" and "Encryption
type" parameters.

The encryption and the MAC computation are only applied to the file data which implies

JULY 19889 PeSIT VERSION 1 ANNEXE 3 A3-2

that in the case of an FPDU multi-article the length bytes of the articles are not inciuded
in either the encryption or the MAC computation.

If the MAC computation is carried out article by article, the MAC of the article n is used as
the initial value to calculate the MAC of the article n+1. If partial MACs are transmitted,
they are sent at the same time as the checkpoints and so may apply to one or more articles.
The final MAGC - or total file MAC - is necessarily the MAC of the {ast article in the file.

The compression is done after encryption and MAC computation. Since the data stream
after encryption is nearly a random string of bytes, compression after encryption is
probably useless. We may conclude that encryption and compression are effectively
mutually exclusive.

2.4 Security and recovery

If a transfer is recovered, the same encryption and MAC computation elements must be
used for the following tries. These elements need not be sent again when a recovery takes
place. If they are retransmitted then they should be identical to those elements previously
transmitted. In particular the initialisation vectors should be the initial one and,
consequently, are not significant during a recovery. A recovery always takes place from a
checkpoint, thus at an article boundary, so both the sender and the receiver should re-
initialise the MAC computation or the encryption algorithm using the appropriate values
corresponding with the checkpoint.

2.5. RSA Algorithm

The RSA keys and modulus, as well as all RSA encrypted fields, are transported as
numerical values (N}, the most significant byte first and the least significant last.

In the certificates, the couple modulus and public key are presented in this order :
modulus {64 bytes, with binary zero padding in the most significant bits if necessary)
followed by the public key (2 bytes).

There is no redundancy before RSA encryption. Al the data to be encrypted by RSA are
right justified and binary zero padded.

Example 1 : format of the Pl 76 "encryption elements®
Before RSA encryption this field is 16 bytes long :

Bytes 1 1o 8 : Encryption key (MSB byte 1, LSB byte 8)
Bytes 9 to 16 : initialisation vector (MSB byte 9, LSB byte 16)

For RSA encryption this field is considered to be a numerical value of 64 bytes whose 48
most significant bytes are zero. The most significant byte that may be non-zero is the
most significant byte of the encryption key.

Example 2 : format of the P! 79 "Digital signature”

Before RSA encryption this field is 16 bytes long :

Bytes 1 to 8 : FID MAC (MSB byte 1, LSB byte 8)
Bytes 9 to 16 : FID MAC and data (MSB byte 9, LSB byte 16}

JULY 1989 PeSIT VERSION 1 ANNEXE 3 A3-3

For RSA encryption this field is considered to be a numerical value of 64 bytes whose 48
most significant bytes are zero. The most significant byte that may be non-zero is the
most significant byte of the FID MAC.

Example 3 : format of the Pi 81 "Acknowledgement of Digital signature”
Before RSA encryption this field is 30 bytes long :

Bytes 1 to 8 : FID MAC (MSB byte 1, LSB byte 8}

Bytes 8 to 16 : FID MAC and data (MSB byte 9, LSB byte 16)
Bytes 17 1o 28 : date and time (YYMMDDhhmmss)

Bytes 29 to 30 : ACK/NAK

For RSA encryption this field is considered to be a numerical value of 64 bytes whose 34
most significant bytes are zero. The most significant byte that may be non-zero is the
most significant byte of the FID MAC.

2.6, Transformation*

A transformation is sometimes applied to the data in operating modes where only DES is
used, thus not in the ETEBACS standard. For example it can be applied to "random
numbers for authentication" which contribute to the reciprocal authentication, or for the
encryption initialisation vectors to allow immediate verification that the two
correspondants are using the same Key encrypting keys.

This transformation if denoted *. The convention is :

B* is equivalent to "B XOR FFFFFFFF00000000" where :
B is a string of 8 bytes

XOR is the exclusive or operation

FFFFFFFFO0000000 is the an 8 byte number whose 4 most significant bytes have all
their bits = 1t and the four least significant bytes have all their bits = 0.

3. USE OF CERTIFICATES

The exchange of certificates allows a correspondant's public key, as certified by the Authority,
to be sent to his partner.

It is necessary to distinguish the key-pairs (public key, secret key) thus the certificates
containing the certified public keys, used for different security functions.

The different uses of the RSA key-pairs are :

1. exchange of random numbers (RN) for reciprocal authentication : use of the sender's secret

8.

key.
. exchange of the RSA encrypted MAC computation elements : use of the receiver's public key.
. exchange of the RSA encrypted encryption elements : use of the receiver's public key.
. exchange of the digital signature : use of the sender's secret key.
. exchange of the second digital signature : use of the sender's secret key.

exchange of the acknowledgement of the digital signature : use of the sender's secret key.

To transmit data encrypted under the receiver's public key requires his certificate to have

JULY 1989 PeSIT VERSICN 1 ANNEXE 3 A3-4

been received previously.

To transmit data encrypted under the sender's secret key requires the sender's certificate to
have been sent previously.

The security constraints may imply the use of different key-pairs, and therefore different
certificates, for the certification functions and for the key transport and signature functions.

Write file case (Caller-sender to server-receiver)

Let's consider a caller and a server irrespective of their statute within the ETEBACS standard
(Customer, Customer operator, Bank, Bank operator).

The caller holds a key-pair Pd1, Sd1 which corresponds with the certificate A<<Pd1»>», used
to encrypt the Random number n.

The caller holds a key-pair Pd2, 3d2 which corresponds with the certificate A<<Pd2>>, used
for the first (or only) digita! signature.

The caller holds a key-pair Pd3, Sd3 which corresponds with the certificate A<<Pd3>>, used
for the second digital signature, if such exists.

The server holds a key-pair Ps1, Sst which corresponds with the certificate A<<Ps1>», used
to encrypt the Random number n.

The server holds a key-pair Ps2, Ss2 which corresponds with the certificate A<<Ps2>», used
by the caller to transport the different encryption and MAC computation elements, and by the
server to transport the acknowledgement of the digital signature.

The following diagram summarises these exchanges while only showing the parameters related
to the RSA keys. The case taken is with reciprocal authentication, reciprocal non-repudiation
and confidentiality.

JULY 1989

PeSIT

VERSION 1 ANNEXE 3 A3-5

CALLER

FPDU.CREATE : P1 72 = RN1
PI 80 = A<<Pdl>>

FPDU.ORF : PI 72 = (RN2)5d1
Pl 74 = (K2)Ps2
P176 =(K1)Ps2

PI 80 = A<<Pd2>>
PI 83 = A<<Pd3>> *

FILE WRITING

SERVER

»

FPDU.ACK(CREATE) : PI1 72 = (ALEA1)Ss1
RN2

Pl 80 = A<<Psl>>

PI 83 = A<<Ps2>>

FILE TRANSFER

FPDU.DTE.END : PI 79 = (MACs)Sd2
PI 82 = (MACs)Sd3 *

>

FPDU.ACK(TRANS.END) : PI 81 = (MACs, ACK/NAK)Ss2

JULY 1989 PeSIT VERSION 1 ANNEXE 3 A3-8

Read file case (Caller-receiver 10 server-sender)

Let's consider a caller and a server irrespective of their statute within the ETEBACS standard
(Customer, Customer operator, Bank, Bank operator).

The caller holds a key-pair Pd1, Sd1 which corresponds with the certificate A<<Pd1>», usad
to encrypt the Random number n.

The caller hoids a key-pair Pd2, Sd2 which corresponds with the certificate A<<Pd2»>>, used
by the server to transport the differert encryption and MAC computation elements, and by the
caller to transport the acknowledgement of the digital signature.

The server holds a key-pair Ps1, Ss1 which corresponds with the certificate A<<Ps1>», used
to encrypt the Random number n.

The server holds a key-pair Ps2, Ss2 which corresponds with the certificate A<<Ps2>>, usad
for the single digital signature (there is only one digital signature for a read transfer).

The following diagram summarises these exchanges while only showing the parameters related
to the RSA keys. The case taken is with reciprocal authentication, reciprocal non-repudiation
and confidentiality.

JULY 1989 PeSIT VERSION 1

ANNEXE 3 A3-7

FILE READING

CALLER SERVER

FPDU.SELECT : P1 72 =RN1
PI 80 = A<<Pdl1>>

>

FPDU.ACK(SELECT) : PI 72 = (RN1)Ss1
RN2
PI 80 = A<<Psl>>
PI 83 = A<<Ps2>>
4

FPDU.ORF : PI 72 = (RN2)S8d1
PI 80 = A<<Pd2>>

>

FPDU.ACK(ORF) : PI 74 = (K2)Pd2
(K1)Pd2
<%

FILE TRANSFER

FPDU.DTF.END : PI 79 = (MACs)Ss2

FPDU.TRANS.END : PI 81 = (MACs, ACK/NAK)Sd2

JULY 1989

PeSIT VERSION 1 ANNEXE 4 Ad-1

ANNEXE 4 : ERROR DIAGNOSTICS

Diagnostic code

Error type| Cause Code Cause Service element
concerned

0 000 "Success" : no error All
3 300 Local "communication system” saturation F.CONNECT
3 301 Unknown called party identification
3 302 Called party not connected to a SSAP
3 303 Distant "communication system” satured

(too many connections)
3 304 Unauthorized caller identification {security)
3 305 Negociation failure ;: - SELECT

306 - RESYN
307 - SYNC

3 308 Version number not supported
3 309 Too many connections already open for a

processing center
3 321 Call the back-up number
3 322 Call back later
3 399 Other
3 312 Service termination requested by the user F.RELEASE
3 313 Connection broken after inactivity time-out Td
3 314 Unused connection broken to accept a new

cennection
3 316 Connection broken by administrative request
3 399 Other
3 304 Unauthorized caller identification (security} |F.ABORT
3 309 Too many connections already open for a

processing center
3 310 Network incident
3 311 Distant PeSIT protocol error
3 312 Service termination requested by the user
3 313 Connection broken after inactivity time-out Td
3 314 Unused connection broken to accept a new

connection
3 315 Negociation failure
3 316 Connection broken by administrative request
3 317 Time-out expired
3 318 Mandatory Pl missing or illegal Pl contents
3 319 Byte count or article count ingorrect
3 320 Excessive number of restarts during the

transfer
3 39¢ Other

JULY 1989 PeSIT VERSION 1 ANNEXE 4 A4-2
Diagnostic code
Error type| Cause Code Cause Service element
concerned
2 200 Insufficient file characteristics F.CREATE
2 201 System resources temporarily insufficient FSELECT
2 202 User resources temporarily insufficient
2 203 Low priority tranfer
2 204 File already exists
2 205 File does not exists
2 2086 File reception would cause disk quota overflow
2 207 File busy
2 208 File too old (prior to D-2 in SIT terms)
2 209 This message type not accepted by the
installation refered to
2 226 Transfer refused
2 299 Other
3 304 Unauthorized caller identification (security)
3 321 Call the back-up number
3 322 Call back later
3 399 Other
2 210 Presentation context negociation failure FOPEN
2 211 File cannot be opened
2 299 Other
2 212 Normal file closure impossible F.CLOSE
2 299 Other
2 213 Unresolvable 1/O error F.READ
2 214 Restart negociation failure
2 299 Other
2 213 Unresolvable 1/O error FWRITE
2 299 Other
2 213 Unresolvable VO error F.DATA.END
2 214 Restart negociation failure F.CANCEL
2 215 Iternal system error
2 216 Voluntary abrupt termination
2 217 Too many unacknowiedged checkpoints
2 218 Restart impossible
2 219 File space overflow
2 220 Aricle length exceeds expected length
2 221 End of transmission time-out expired
2 222 Excess data between checkpoints
2 299 Other

JULY 1988 PeSIT VERSION 1 ANNEXE 4 A4-3

Diagnostic code

Error type| Cause Code Cause Service element
concerned
2 223 Abnormal end of transfer F.TRANSFER.END
2 224 The size of the file transmitted exceeds the size | F.OESELECT
given in the F.CREATE
2 225 Congestion in the station application software :
the file has been correctly received but SCRS
cannot pass it on {o the station application
software
2 299 Other
1 100 Transmission error FRESTART
2 299 Other

JULY 1989

PeSIT

VERSION 1 ANNEXE 5

As5-1

ANNEXE 5 : SUMMARY OF THE PROTOCOL UNITS
AND THEIR PARAMETERS

{

s e Y o]
P = O

e B e Y e B o]
oo bW

[W G G R gy
W o~ W kWK

r R
-t O

W w RN MR
- LS BE “ S SV I A]

W W W
N

ANANANARANANA
DX ow-dm:

bbb
N —=o

FPDU LIST
FPDU LIST

FPDU.DTF
FPDU.READ
FPDU.WRITE
FPDU.SYN
FPDU.DTF.END
FPDU.RESYN
FPDU.IDT
FPDU.TRANS.END

FPDU.CREATE
FPDU.SELECT
FPDU.DESELECT
FPDU.ORF
FPDU.CRF
FPDU.MSG
FPDU.MSGDM
FPDU.MSGMM
FPDU.MSGFM

FPDU.CONNECT
FPDUACONNECT
FPDU.RCONNECT
FPDU.RELEASE
FPDU.RELCONF
FPDU.ABORT

FPDU.ACK(CREATE)
FPDU.ACK(SELECT)
FPDU.ACK(DESELECT)
FPDU.ACK(ORF)
FPDU.ACK(CRF)
FPDU.ACK(READ)
FPDU.ACK(WRITE)
FPDU.ACK(TRANS.END)
FPDU.ACK(SYN)
FPDU.ACK(RESYN)
FPDU.ACK(IDT)
FPDU.ACK(MSG)

FPOU.DTFMA
FPDU.DTFDA
FPOU.DTFFA

JULY 1989 PeSIT VERSION 1

ANNEXE 5 A5-2

Pl code

O WK =

—_ ok L =k i ok =k —L -k
0o~ O faldh =

NN N
N - o

RPN
W~ m W

30
31
32
33
34
36
37
38
39

40
41
42

50
51
52
61
62
83
64

71
72
73

{PGl}

(PGI}

{PGI}

PARAMETER LIST

Parameter description

CRC usage
Diagnostics

Caller identification
Server identification
Access control
Version number
Option : checkpointing
File identifier

File type

File name

Transfer identifier
Requested atiributes
Recovered transfer
Data coding
Transfer priority
Recovery point

End of transfer code

Checkpoint number
Compression

Access type

Restarting

Maximum size of a data element
Protocol monitoring time-out
Number of data bytes

Number of articles

Diagnostic complements

Logical attributes
Article format
Article length

File attributes
Use of the signature
SITMAC

File Label

Key length

Key offset

Physical attributes
Storage reservation unit
Maximum reserved space

Historical attributes

Date and time of creation
Date and time of last access
Customer identifier

Bank identifier

File access control

Server date and time

Authentication type
Authentication elements
MAC computation type

MAC computation elements
Encryption type
Encryption elements
Digital signature type
MAC

Digital signature

Certificate

Acknowledgement of Digital signature
Second digital signature

Second certificate

Datagram
Free text

